Approximate Nearest Line Search in High Dimensions

Sepideh Mahabadi
\(\square \square \square \square \begin{aligned} \& Massachuse
\& Institute of
\& Technology\end{aligned}\)

The NLS Problem

- Given: a set of N lines L in \mathbb{R}^{d}

The NLS Problem

- Given: a set of N lines L in \mathbb{R}^{d}
- Goal: build a data structure s.t.
- given a query q, find the closest line ℓ^{*} to q

The NLS Problem

- Given: a set of N lines L in \mathbb{R}^{d}
- Goal: build a data structure s.t.
- given a query q, find the closest line ℓ^{*} to q
- polynomial space
- sub-linear query time

The NLS Problem

- Given: a set of N lines L in \mathbb{R}^{d}
- Goal: build a data structure s.t.
- given a query q, find the closest line ℓ^{*} to q
- polynomial space
- sub-linear query time

Approximation

- Finds an approximate closest line ℓ $\operatorname{dist}(q, \ell) \leq \operatorname{dist}\left(q, \ell^{*}\right)(1+\epsilon)$

Nearest Neighbor Problems
Motivation
Previous Work
Our result

Notation

BACKGROUND

Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^{*} to q.

Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^{*} to q.

- Applications: database, information retrieval, pattern recognition, computer vision
- Features: dimensions
- Objects: points

- Similarity: distance between points

Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^{*} to q.

- Applications: database, information retrieval, pattern recognition, computer vision
- Features: dimensions
- Objects: points

- Similarity: distance between points
- Current solutions suffer from "curse of dimensionality":
- Either space or query time is exponential in d
- Little improvement over linear search

Approximate Nearest Neighbor(ANN)

- ANN: Given a set of N points P, build a data structure s.t. given a query point q, finds an approximate closest point p to q, i.e.,

$$
\operatorname{dist}(q, p) \leq \operatorname{dist}\left(q, p^{*}\right)(1+\epsilon)
$$

Approximate Nearest Neighbor(ANN)

- ANN: Given a set of N points P, build a data structure s.t. given a query point q, finds an approximate closest point p to q, i.e.,

$$
\operatorname{dist}(q, p) \leq \operatorname{dist}\left(q, p^{*}\right)(1+\epsilon)
$$

- There exist data structures with different tradeoffs. Example:
- Space: $(d N)^{O\left(\frac{1}{\epsilon^{2}}\right)}$
- Query time: $\left(\frac{d \log N}{\epsilon}\right)^{O(1)}$

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k flats (affine subspace) instead of points

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k flats (affine subspace) instead of points

- Model data under linear variations
- Unknown or unimportant parameters in database

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k flats (affine subspace) instead of points

- Model data under linear variations
- Unknown or unimportant parameters in database
- Example:
- Varying light gain parameter of images
- Each image/point becomes a line
- Search for the closest line to the query image

Previous and Related Work

- Magen[02]: Nearest Subspace Search
- Query time is fast: $\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$
- Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Previous and Related Work

- Magen[02]: Nearest Subspace Search
- Query time is fast : $\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$
- Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Dual Problem: Database is a set of points, query is a k-flat

- [AIKN] for 1-flat: for any $t>0$
- Query time: $O\left(d^{3} N^{0.5+t}\right)$
- Space: $d^{2} N^{o\left(\frac{1}{\epsilon^{2}}+\frac{1}{t^{2}}\right)}$

Previous and Related Work

- Magen[02]: Nearest Subspace Search
- Query time is fast : $\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$
- Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Dual Problem: Database is a set of points, query is a k-flat

- [AIKN] for 1-flat: for any $t>0$
- Query time: $O\left(d^{3} N^{0.5+t}\right)$
- Space: $d^{2} N^{o\left(\frac{1}{\epsilon^{2}}+\frac{1}{t^{2}}\right)}$
- Very recently [MNSS] extended it for k-flats
- Query time $O\left(n^{\frac{k}{k+1-\rho}+t}\right)$
- Space: $O\left(n^{1+\frac{\sigma k}{k+1-\rho}}+n \log ^{O\left(\frac{1}{t}\right)} n\right)$

Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1+\epsilon)$-approximate solution with high probability

- Space: $(N+d)^{o\left(\frac{1}{\epsilon^{2}}\right)}$
- Time $:\left(d+\log N+\frac{1}{\epsilon}\right)^{o(1)}$

Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1+\epsilon)$-approximate solution with high probability

- Space: $(N+d)^{o\left(\frac{1}{\epsilon^{2}}\right)}$
- Time : $\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on d

Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1+\epsilon)$-approximate solution with high probability

- Space: $(N+d)^{o\left(\frac{1}{\epsilon^{2}}\right)}$
- Time : $\left(d+\log N+\frac{1}{\epsilon}\right)^{o(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on d
- The first algorithm with poly log query time and polynomial space for objects other than points

Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1+\epsilon)$-approximate solution with high probability

- Space: $(N+d)^{o\left(\frac{1}{\epsilon^{2}}\right)}$
- Time : $\left(d+\log N+\frac{1}{\epsilon}\right)^{o(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on d
- The first algorithm with poly log query time and polynomial space for objects other than points
- Only uses reductions to ANN

Notation

- L : the set of lines with size N
- q : the query point

Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c

Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
- dist: the Euclidean distance between objects

Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
- dist: the Euclidean distance between objects
- angle: defined between lines

Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
- dist: the Euclidean distance between objects
- angle: defined between lines
- δ-close: two lines ℓ, ℓ^{\prime} are δ-close if $\sin \left(\operatorname{angle}\left(\ell, \ell^{\prime}\right)\right) \leq \delta$. Similarly we define δ-far/ strictly δ-close/ strictly δ-far

Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
- dist: the Euclidean distance between objects
- angle: defined between lines
- δ-close: two lines ℓ, ℓ^{\prime} are δ-close if $\sin \left(\operatorname{angle}\left(\ell, \ell^{\prime}\right)\right) \leq \delta$. Similarly we define δ-far/ strictly δ-close/ strictly δ-far
- $C P_{\ell_{1} \rightarrow \ell_{2}}$: closest point on ℓ_{1} to ℓ_{2}

Unbounded Module
Net Module
Parallel Module MODULES

Unbounded Module - Intuition

- All lines in L pass through the origin o

Unbounded Module - Intuition

- All lines in L pass through the origin o
- Data structure:
- Project all lines onto any sphere $S(o, r)$ to get point set P
- Build ANN data structure $\operatorname{ANN}(P, \epsilon)$

Unbounded Module - Intuition

- All lines in L pass through the origin o
- Data structure:
- Project all lines onto any sphere $S(o, r)$ to get point set P
- Build ANN data structure $\operatorname{ANN}(P, \epsilon)$
- Query Algorithm:
- Project the query on $S(o, r)$ to get q^{\prime}
- Find the approximate closest point to q^{\prime}, i.e., $p=A N N_{P}\left(q^{\prime}\right)$

- Return the corresponding line of p

Unbounded Module

- All lines in L pass through a small ball $B(o, r)$
- Query is far enough, outside of $B(o, R)$
- Use the same data structure and query algorithm

Unbounded Module

- All lines in L pass through a small ball $B(o, r)$
- Query is far enough, outside of $B(o, R)$
- Use the same data structure and query algorithm

Lemma: if $R \geq \frac{r}{\epsilon \delta}$, the returned line ℓ_{p} is

- Either an approximate closest line
- Or is δ-close to the closest line ℓ^{*}

Unbounded Module

- All lines in L pass through a small ball $B(o, r)$
- Query is far enough, outside of $B(o, R)$
- Use the same data structure and query algorithm

Lemma: if $R \geq \frac{r}{\epsilon \delta}$, the returned line ℓ_{p} is

- Either an approximate closest line
- Or is δ-close to the closest line ℓ^{*}

This helps us further restrict our search to almost parallel lines to ℓ_{p}

Net Module

- Intuition: sampling points from each line finely enough to get a set of points P, and building an $\operatorname{ANN}(P, \epsilon)$ should suffice to find the approximate closest line.

Net Module

- Intuition: sampling points from each line finely enough to get a set of points P, and building an $\operatorname{ANN}(P, \epsilon)$ should suffice to find the approximate closest line.

Lemma:

- Let x be the separation parameter: distance between two adjacent samples on a line
- Then
- Either the returned line ℓ_{p} is an approximate closest line
$-\operatorname{Or} \operatorname{dist}\left(q, \ell_{p}\right) \leq x / \epsilon$

Parallel Module - Intuition

- All lines in L are parallel

Parallel Module - Intuition

- All lines in L are parallel
- Data structure:
- Project all lines onto any hyper-plane g which is perpendicular to all the lines to get point set P
- Build ANN data structure $\operatorname{ANN}(P, \epsilon)$

Parallel Module - Intuition

- All lines in L are parallel
- Data structure:
- Project all lines onto any hyper-plane g which is perpendicular to all the lines to get point set P
- Build ANN data structure $\operatorname{ANN}(P, \epsilon)$
- Query algorithm:
- Project the query on g to get q^{\prime}
- Find the approximate closest point to q^{\prime}, i.e., $p=A N N_{P}\left(q^{\prime}\right)$
- Return the corresponding line to p

Parallel Module

- All lines in L are δ-close to a base line ℓ_{b}
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_{b}
- Query is close enough to g
- Use the same data structure and query algorithm

paraileinadule

- All lines in L are δ-close to a base line ℓ_{b}
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_{b}
- Query is close enough to g
- Use the same data structure and query algorithm

Lemma: if $\operatorname{dist}(q, g) \leq \frac{D \epsilon}{\delta}$, then

- Either the returned line ℓ_{p} is an approximate closest line
- $\operatorname{Or} \operatorname{dist}\left(q, \ell_{p}\right) \leq D$

paraileinadule

- All lines in L are δ-close to a base line ℓ_{b}
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_{b}
- Query is close enough to g
- Use the same data structure and query algorithm

Lemma: if $\operatorname{dist}(q, g) \leq \frac{D \epsilon}{\delta}$, then

- Either the returned line ℓ_{p} is an approximate closest line
- $\operatorname{Or} \operatorname{dist}\left(q, \ell_{p}\right) \leq D$

Thus, for a set of almost parallel lines, we can use a set of parallel modules to cover a bounded region.

General Case

- Input lines can have any configuration
- Divergent Case
- Input lines are $O(\epsilon)$-far from each other
- Almost Parallel Case
- Input lines are all $O(\epsilon)$-close to each other

ALGORITHMS

Outline of the Algorithms

- Input: a set of n lines S

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}
- For $\log n$ iterations
- Use ℓ_{p} to find a much closer line $\ell_{p}{ }^{\prime}$ Improvement
- Update ℓ_{p} with ℓ_{p}^{\prime}

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}
- For $\log n$ iterations
- Use ℓ_{p} to find a much closer line $\ell_{p}{ }^{\prime}$ Improvement
- Update ℓ_{p} with ℓ_{p}^{\prime}

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}
- For $\log n$ iterations
- Use ℓ_{p} to find a much closer line $\ell_{p}{ }^{\prime}$ Improvement
- Update ℓ_{p} with ℓ_{p}^{\prime}

Why?

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}
- For $\log n$ iterations
- Use ℓ_{p} to find a much closer line $\ell_{p}{ }^{\prime}$ Improvement
- Update ℓ_{p} with ℓ_{p}^{\prime}

Let $\ell_{1}, \ldots, \ell_{\log n}$ be the $\log n$ closest lines to q in the set S

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}
- For $\log n$ iterations

Let $\ell_{1}, \ldots, \ell_{\log n}$ be the $\log n$ closest lines to q in the set S With high probability at least one of $\left\{\ell_{1}, \ldots, \ell_{\log n}\right\}$ are sampled in T
$-\operatorname{dist}\left(q, \ell_{p}\right) \leq \operatorname{dist}\left(q, \ell_{\log n}\right)(1+\epsilon)$
- $\log n$ improvement steps suffices to find an approximate closest line

Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

- Data structure
- Query Processing Algorithm

General Case

- Search among all lines that are ϵ-far from current line using Divergent Case

General Case

- Search among all lines that are ϵ-far from current line using Divergent Case
- Search among the lines that are almost parallel to line found in previous step using Almost Parallel Case

Divergent Case

Assume any two lines are ϵ-far; they diverge quickly.

Divergent Case

Assume any two lines are ϵ-far; they diverge quickly.

- Let ℓ be the current line, and ℓ^{*} be the closest line to q
- Let $x=\operatorname{dist}(q, \ell)$
- $\operatorname{dist}\left(q, \ell^{*}\right) \leq x$

Divergent Case

Assume any two lines are ϵ-far; they diverge quickly.

- Let ℓ be the current line, and ℓ^{*} be the closest line to q
- Let $x=\operatorname{dist}(q, \ell)$
- $\operatorname{dist}\left(q, \ell^{*}\right) \leq x$

- All potential ℓ^{*} intersect $B(q, x)$

Divergent Case

Assume any two lines are ϵ-far; they diverge quickly.

- Let ℓ be the current line, and ℓ^{*} be the closest line to q
- Let $x=\operatorname{dist}(q, \ell)$
- $\operatorname{dist}\left(q, \ell^{*}\right) \leq x$

- All potential ℓ^{*} intersect $B(q, x)$
- Good news: we can build a net module inside $B(q, x)$ with separation parameter $x \epsilon^{2}$ to improve over ℓ

Divergent Case

Assume any two lines are ϵ-far; they diverge quickly.

- Let ℓ be the current line, and ℓ^{*} be the closest line to q
- Let $x=\operatorname{dist}(q, \ell)$
- $\operatorname{dist}\left(q, \ell^{*}\right) \leq x$

- All potential ℓ^{*} intersect $B(q, x)$
- Good news: we can build a net module inside $B(q, x)$ with separation parameter $x \epsilon^{2}$ to improve over ℓ
- Bad news: we don't know this ball in advance

Divergent Case contd.

What we know:

- $\operatorname{dist}\left(\ell, \ell^{*}\right) \leq 2 x$
- Let q^{\prime} be the projection of q on ℓ

Divergent Case contd.

What we know:

- $\operatorname{dist}\left(\ell, \ell^{*}\right) \leq 2 x$
- Let q^{\prime} be the projection of q on ℓ

Divergent Case contd.

What we know:

- $\operatorname{dist}\left(\ell, \ell^{*}\right) \leq 2 x$
- Let q^{\prime} be the projection of q on ℓ
$-C P_{\ell \rightarrow \ell^{*}}$ is not farther than $\frac{x}{\epsilon}$ from q^{\prime} since they are ϵ-far

Divergent Case contd.

What we know:

- $\operatorname{dist}\left(\ell, \ell^{*}\right) \leq 2 x$
- Let q^{\prime} be the projection of q on ℓ
$-C P_{\ell \rightarrow \ell^{*}}$ is not farther than $\frac{x}{\epsilon}$ from q^{\prime} since they are ϵ-far
- $\boldsymbol{B}\left(\boldsymbol{q}^{\prime}, \boldsymbol{O}\left(\frac{x}{\epsilon}\right)\right)$ touches all such lines

Data Structure

For each $\ell \in S$

- Sort all lines ℓ^{\prime} according to their distance from ℓ

Data Structure

For each $\ell \in S$

- Sort all lines ℓ^{\prime} according to their distance from ℓ
- For all $1 \leq i \leq n$, let S_{i} be the $i^{\text {th }}$ closest lines

Data Structure

For each $\ell \in S$

- Sort all lines ℓ^{\prime} according to their distance from ℓ
- For all $1 \leq i \leq n$, let S_{i} be the $i^{\text {th }}$ closest lines
- Sort all lines in S_{i} such as ℓ^{\prime} according to the position of $C P_{\ell \rightarrow \ell}$

Data Structure

For each $\ell \in S$

- Sort all lines ℓ^{\prime} according to their distance from ℓ
- For all $1 \leq i \leq n$, let S_{i} be the $i^{t h}$ closest lines
- Sort all lines in S_{i} such as ℓ^{\prime} according to the position of $C P_{\ell \rightarrow \ell}$
- For each interval of lines A in sorted S_{i}

Data Structure

For each $\ell \in S$

- Sort all lines ℓ^{\prime} according to their distance from ℓ
- For all $1 \leq i \leq n$, let S_{i} be the $i^{\text {th }}$ closest lines
- Sort all lines in S_{i} such as ℓ^{\prime} according to the position of $C P_{\ell \rightarrow \ell}$
- For each interval of lines A in sorted S_{i}
- Find smallest ball $B_{A}\left(\mathrm{o}_{\mathrm{A}}, \mathrm{r}_{\mathrm{A}}\right)$ with its center on ℓ which intersects all lines in A $->\left(r_{A} \leq O\left(\frac{x}{\epsilon}\right)\right)$

Data Structure

For each $\ell \in S$

- Sort all lines ℓ^{\prime} according to their distance from ℓ
- For all $1 \leq i \leq n$, let S_{i} be the $i^{\text {th }}$ closest lines
- Sort all lines in S_{i} such as ℓ^{\prime} according to the position of $C P_{\ell \rightarrow \ell}$
- For each interval of lines A in sorted S_{i}
- Find smallest ball $B_{A}\left(\mathrm{o}_{\mathrm{A}}, \mathrm{r}_{\mathrm{A}}\right)$ with its center on ℓ which intersects all lines in A $->\left(r_{A} \leq O\left(\frac{x}{\epsilon}\right)\right)$
- Construct a net module inside of the ball of $B\left(o_{A}, r_{A} / \epsilon^{2}\right)$ with separation $r_{A} \epsilon^{3}$
(\#samples $\left.=\mathrm{O}\left(n r_{A} /\left(\epsilon^{2} r_{A} \epsilon^{3}\right)\right)=O\left(n / \epsilon^{5}\right)\right)$

Data Structure

For each $\ell \in S$

- Sort all lines ℓ^{\prime} according to their distance from ℓ
- For all $1 \leq i \leq n$, let S_{i} be the $i^{\text {th }}$ closest lines
- Sort all lines in S_{i} such as ℓ^{\prime} according to the position of $C P_{\ell \rightarrow \ell}$
- For each interval of lines A in sorted S_{i}
- Find smallest ball $B_{A}\left(\mathrm{o}_{\mathrm{A}}, \mathrm{r}_{\mathrm{A}}\right)$ with its center on ℓ which intersects all lines in A $->\left(r_{A} \leq O\left(\frac{x}{\epsilon}\right)\right)$
- Construct a net module inside of the ball of $B\left(o_{A}, r_{A} / \epsilon^{2}\right)$ with separation $r_{A} \epsilon^{3}$ (\#samples $\left.=O\left(n r_{A} /\left(\epsilon^{2} r_{A} \epsilon^{3}\right)\right)=O\left(n / \epsilon^{5}\right)\right)$
- Construct an unbounded module outside of $B_{A}\left(o_{A}, \frac{1}{\epsilon^{2}} r_{A}\right)$

Query Processing Algorithm

Given query point q

Query Processing Algorithm

Given query point q

- Project q on ℓ to get q^{\prime}
- Use binary search to find the set A of all lines ℓ^{\prime} that are within distance $2 x$ of ℓ, and that $C P_{\ell \rightarrow \ell^{\prime}}$ is within distance $2 x / \epsilon$ of q^{\prime}

Query Processing Algorithm

Given query point q

- Project q on ℓ to get q^{\prime}
- Use binary search to find the set A of all lines ℓ^{\prime} that are within distance $2 x$ of ℓ, and that $C P_{\ell \rightarrow \ell^{\prime}}$ is within distance $2 x / \epsilon$ of q^{\prime}

Query Processing Algorithm

Given query point q

- Project q on ℓ to get q^{\prime}
- Use binary search to find the set A of all lines ℓ^{\prime} that are within distance $2 x$ of ℓ, and that $C P_{\ell \rightarrow \ell^{\prime}}$ is within distance $2 x / \epsilon$ of q^{\prime}
- Let $B_{A}\left(o_{A}, r_{A}\right)$ be the corresponding ball

Query Processing Algorithm

Given query point q

- Project q on ℓ to get q^{\prime}
- Use binary search to find the set A of all lines ℓ^{\prime} that are within distance $2 x$ of ℓ, and that $C P_{\ell \rightarrow \ell^{\prime}}$ is within distance $2 x / \epsilon$ of q^{\prime}
- Let $B_{A}\left(o_{A}, r_{A}\right)$ be the corresponding ball
- If $x \in B_{A}\left(o_{A}, \frac{r_{A}}{\epsilon^{2}}\right)$ use net module:
- Find approximate closest line -> done!
- Or find a line with distance at most $r_{A} \epsilon^{2} \leq x \epsilon \quad\left(r_{A} \leq x / \epsilon\right)$-> we improved

Query Processing Algorithm

Given query point q

- Project q on ℓ to get q^{\prime}
- Use binary search to find the set A of all lines ℓ^{\prime} that are within distance $2 x$ of ℓ, and that $C P_{\ell \rightarrow \ell^{\prime}}$ is within distance $2 x / \epsilon$ of q^{\prime}
- Let $B_{A}\left(o_{A}, r_{A}\right)$ be the corresponding ball
- If $x \in B_{A}\left(o_{A}, \frac{r_{A}}{\epsilon^{2}}\right)$ use net module:
- Find approximate closest line -> done!
- Or find a line with distance at most $r_{A} \epsilon^{2} \leq x \epsilon \quad\left(r_{A} \leq x / \epsilon\right)$-> we improved
- Otherwise use unbounded module to find the
 approximate closest line -> done!

Almost Parallel

All lines are 2ϵ-close to each other.
For each line ℓ

Almost Parallel

All lines are 2ϵ-close to each other.
For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ_{1}, ℓ_{2} :
- In each slab the relative order of $\operatorname{dist}_{H(\ell, o)}\left(\ell, \ell_{1}\right)$ and $\operatorname{dist}_{H(\ell, o)}\left(\ell, \ell_{2}\right)$ on the hyper-plane remains the same as we move o on ℓ in the slab
There is a unique ordering of the lines

Almost Parallel

All lines are 2ϵ-close to each other.
For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ_{1}, ℓ_{2} :
- In each slab the relative order of $\operatorname{dist}_{H(\ell, o)}\left(\ell, \ell_{1}\right)$ and $\operatorname{dist}_{H(\ell, o)}\left(\ell, \ell_{2}\right)$ on the hyper-plane remains the same as we move o on ℓ in the slab
There is a unique ordering of the lines
- $\operatorname{dist}_{H(\ell, o)}\left(\ell_{1}, \ell_{2}\right)$ on the hyper-plane is
 monotone

Almost Parallel

All lines are 2ϵ-close to each other.
For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ_{1}, ℓ_{2} :
- In each slab the relative order of $\operatorname{dist}_{H(\ell, o)}\left(\ell, \ell_{1}\right)$ and $\operatorname{dist}_{H(\ell, o)}\left(\ell, \ell_{2}\right)$ on the hyper-plane remains the same as we move o on ℓ in the slab
There is a unique ordering of the lines
- $\operatorname{dist}_{H(\ell, o)}\left(\ell_{1}, \ell_{2}\right)$ on the hyper-plane is monotone

The minimum ball intersecting any prefix of lines have its center on the boundary of slab

Almost Parallel

All lines are 2ϵ-close to each other.
For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ_{1}, ℓ_{2} :
- In each slab the relative order of $\operatorname{dist}_{H(\ell, o)}\left(\ell, \ell_{1}\right)$ and $\operatorname{dist}_{H(\ell, o)}\left(\ell, \ell_{2}\right)$ on the hyper-plane remains the same as we move o on ℓ in the slab
There is a unique ordering of the lines
- $\operatorname{dist}_{H(\ell, o)}\left(\ell_{1}, \ell_{2}\right)$ on the hyper-plane is monotone

The minimum ball intersecting any prefix of lines have its center on the boundary of slab.

- $O\left(n^{2}\right)$ slabs suffices

Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest $i^{\text {th }}$ lines s.t. $o \in \ell$. We know o would be on the boundary of slab.

Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest $i^{\text {th }}$ lines s.t. $o \in \ell$. We know o would be on the boundary of slab.

Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest $i^{\text {th }}$ lines s.t. $o \in \ell$. We know o would be on the boundary of slab.

Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest $i^{\text {th }}$ lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
- Let $\delta_{0}>\cdots>\delta_{t}$ be all pairwise angles
- Let $R_{0}=\frac{r}{\epsilon \delta_{0}}, \ldots, R_{t}=\frac{r}{\epsilon \delta_{t}}$
- Consider the balls $B\left(o, R_{0}\right), \ldots, B\left(o, R_{t}\right)$

Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest $i^{\text {th }}$ lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
- Let $\delta_{0}>\cdots,>$ be all pairwise angles
- Let $R_{0}=\frac{r}{\epsilon \delta_{0}}, \ldots, R_{t}=\frac{r}{\epsilon \delta_{t}}$
- Consider the balls $B\left(o, R_{0}\right), \ldots, B\left(o, R_{t}\right)$
- Build net module inside $B\left(o, R_{0}\right)$

Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest $i^{\text {th }}$ lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
- Let $\delta_{0}>\cdots>\delta_{t}$ be all pairwise angles
- Let $R_{0}=\frac{r}{\epsilon \delta_{0}}, \ldots, R_{t}=\frac{r}{\epsilon \delta_{t}}$
- Consider the balls $B\left(o, R_{0}\right), \ldots, B\left(o, R_{t}\right)$
- Build net module inside $B\left(o, R_{0}\right)$

Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest $i^{\text {th }}$ lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
- Let $\delta_{0}>\cdots>\delta_{t}$ be all pairwise angles
- Let $R_{0}=\frac{r}{\epsilon \delta_{0}}, \ldots, R_{t}=\frac{r}{\epsilon \delta_{t}}$
- Consider the balls $B\left(o, R_{0}\right), \ldots, B\left(o, R_{t}\right)$
- Build net module inside $B\left(o, R_{0}\right)$
- For each ball $B\left(o, R_{i}\right)$
- Build unbounded module on it

Data Structure in Each Slab

- For each i, let $B(o, r)$ be the smallest ball touching the closest $i^{\text {th }}$ lines s.t. $o \in \ell$. We know o would be on the boundary of slab.
- Let $\delta_{0}>\cdots>\delta_{t}$ be all pairwise angles
- Let $R_{0}=\frac{r}{\epsilon \delta_{0}}, \ldots, R_{t}=\frac{r}{\epsilon \delta_{t}}$
- Consider the balls $B\left(o, R_{0}\right), \ldots, B\left(o, R_{t}\right)$
- Build net module inside $B\left(o, R_{0}\right)$
- For each ball $B\left(o, R_{i}\right)$
- Build unbounded module on it
- For each line ℓ_{b}
- Build a set of parallel modules with ℓ_{b} as their base line for all the lines that
 are δ_{i}-close to ℓ_{b}, so that they cover the space between $B\left(o, R_{i}\right)$ and $B\left(o, R_{i+1}\right)$ with separation $R_{i+1} \epsilon$

Query Processing Algorithm

- Given q, find the right slab, and retrieve all candidate lines
- Using binary search find r

Query Processing Algorithm

- Given q, find the right slab, and retrieve all candidate lines
- Using binary search find r
- Find largest i such that $q \notin B\left(o, R_{i}\right)$

Query Processing Algorithm

- Given q, find the right slab, and retrieve all candidate lines
- Using binary search find r
- Find largest i such that $q \notin B\left(o, R_{i}\right)^{\text {B }}$
- Use the unbounded module of $B\left(o, R_{i}\right)$ to find a line ℓ^{\prime}, we know
- Either ℓ^{\prime} is an approximate closest line -> done
- It is δ_{i+1}-close to ℓ^{*}

Query Processing Algorithm

- Given q, find the right slab, and retrieve all candidate lines
- Using binary search find r
- Find largest i such that $q \notin B\left(o, R_{i}\right)$
- Use the unbounded module of $B\left(o, R_{i}\right)$ to find a line ℓ^{\prime}, we know - Either ℓ^{\prime} is an approximate closest line -> done
- It is δ_{i+1}-close to ℓ^{*}
- Use the parallel modules of ℓ^{\prime} to
 find an approximate closest line. -> done

Query Processing Algorithm

- Given q, find the right slab, and retrieve all candidate lines
- Using binary search find r
- Find largest i such that $q \notin B\left(o, R_{i}\right)$
- Use the unbounded module of $B\left(o, R_{i}\right)$ to find a line ℓ^{\prime}, we know - Either ℓ^{\prime} is an approximate closest line -> done
- It is δ_{i+1}-close to ℓ^{*}
- Use the parallel modules of ℓ^{\prime} to
 find an approximate closest line. -> done

Summary

- Nearest Line Search Problem

Summary

- Nearest Line Search Problem
- Modules: unbounded, net, parallel

Summary

- Nearest Line Search Problem
- Modules: unbounded, net, parallel
- Use of random sampling

Summary

- Nearest Line Search Problem
- Modules: unbounded, net, parallel
- Use of random sampling
- How to improve given a line

Summary

- Nearest Line Search Problem
- Modules: unbounded, net, parallel
- Use of random sampling
- How to improve given a line
- Bounds of our algorithm
- Polynomial Space:

$$
\left(\frac{d N}{\epsilon}\right)^{O(1)} \times \mathcal{S}\left(\left(\frac{N}{\epsilon}\right)^{O(1)}, \epsilon\right)=O(N+d)^{O\left(\frac{1}{\epsilon^{2}}\right)}
$$

- Poly-logarithmic query time :

$$
(d \log N)^{O(1)} \times \mathcal{T}\left(\left(\frac{N}{\epsilon}\right)^{O(1)}, \epsilon\right)=\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}
$$

Future Work

- The current result is not good in practice
- Large exponents
- Algorithm is complicated

Can we get a simpler algorithms?

Future Work

- The current result is not good in practice
- Large exponents
- Algorithm is complicated

Can we get a simpler algorithms?

- Generalization to higher dimensional flats

Future Work

- The current result is not good in practice
- Large exponents
- Algorithm is complicated

Can we get a simpler algorithms?

- Generalization to higher dimensional flats
- Generalization to other objects, e.g. balls

THANK YOU!

