Approximate Nearest Line Search in High Dimensions

Sepideh Mahabadi

Massachusetts Institute of Technology

• Given: a set of N lines L in \mathbb{R}^d

- Given: a set of N lines L in \mathbb{R}^d
- Goal: build a data structure s.t.
 - given a query q , find the closest line ℓ^* to q

- Given: a set of N lines L in \mathbb{R}^d
- Goal: build a data structure s.t.
 - given a query q , find the closest line ℓ^* to q
 - polynomial space
 - sub-linear query time

- Given: a set of N lines L in \mathbb{R}^d
- Goal: build a data structure s.t.
 - given a query q , find the closest line ℓ^* to q
 - polynomial space
 - sub-linear query time

Approximation

• Finds an approximate closest line ℓ $dist(q, \ell) \leq dist(q, \ell^*)(1 + \epsilon)$

Nearest Neighbor Problems Motivation Previous Work Our result Notation

BACKGROUND

Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^* to q.

Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^* to q.

- Applications: database, information retrieval, pattern recognition, computer vision
 - Features: dimensions
 - Objects: points
 - Similarity: distance between points

Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^* to q.

- Applications: database, information retrieval, pattern recognition, computer vision
 - Features: dimensions
 - Objects: points
 - Similarity: distance between points
- Current solutions suffer from "curse of dimensionality":
 - Either space or query time is exponential in d
 - Little improvement over linear search

q

Approximate Nearest Neighbor(ANN)

• ANN: Given a set of N points P, build a data structure s.t. given a query point q, finds an approximate closest point p to q, i.e., $dist(q,p) \leq dist(q,p^*)(1 + \epsilon)$

Approximate Nearest Neighbor(ANN)

- ANN: Given a set of N points P, build a data structure s.t. given a query point q, finds an approximate closest point p to q, i.e., $dist(q,p) \leq dist(q,p^*)(1 + \epsilon)$
- There exist data structures with different tradeoffs. Example:

- Space:
$$(dN)^{O(\frac{1}{\epsilon^2})}$$

- Query time: $\left(\frac{d \log N}{\epsilon}\right)^{O(1)}$

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k-flats (affine subspace) instead of points

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k-flats (affine subspace) instead of points

- Model data under linear variations
- Unknown or unimportant parameters in database

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k-flats (affine subspace) instead of points

- Model data under linear variations
- Unknown or unimportant parameters in database
- Example:
 - Varying light gain parameter of images
 - Each image/point becomes a line
 - Search for the closest line to the query image

Previous and Related Work

- Magen[02]: Nearest Subspace Search
 - Query time is fast : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
 - Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Previous and Related Work

- Magen[02]: Nearest Subspace Search
 - Query time is fast : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
 - Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Dual Problem: Database is a set of points, query is a k-flat

- [AIKN] for 1-flat: for any t > 0
 - Query time: $O(d^3N^{0.5+t})$
 - Space: $d^2 N^{O\left(\frac{1}{\epsilon^2} + \frac{1}{t^2}\right)}$

Previous and Related Work

- Magen[02]: Nearest Subspace Search
 - Query time is fast : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
 - Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Dual Problem: Database is a set of points, query is a k-flat

- [AIKN] for 1-flat: for any t > 0
 - Query time: $O(d^3N^{0.5+t})$
 - Space: $d^2 N^{O\left(\frac{1}{\epsilon^2} + \frac{1}{t^2}\right)}$
- Very recently [MNSS] extended it for *k*-flats

- Query time
$$O\left(n^{\frac{k}{k+1-\rho}+t}\right)$$

- Space: $O\left(n^{1+\frac{\sigma k}{k+1-\rho}}+n\log^{O\left(\frac{1}{t}\right)}n\right)$

- Space: $(N+d)^{O\left(\frac{1}{\epsilon^2}\right)}$
- Time: $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$

- Space: $(N+d)^{O\left(\frac{1}{\epsilon^2}\right)}$
- Time: $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on *d*

- Space: $(N+d)^{O\left(\frac{1}{\epsilon^2}\right)}$
- Time: $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on *d*
- The first algorithm with poly log query time and polynomial space for objects other than points

- Space: $(N+d)^{O\left(\frac{1}{\epsilon^2}\right)}$
- Time: $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on *d*
- The first algorithm with poly log query time and polynomial space for objects other than points
- Only uses reductions to ANN

- *L* : the set of lines with size *N*
- q : the query point

- *L* : the set of lines with size *N*
- q : the query point
- B(c,r): ball of radius r around c

- *L* : the set of lines with size *N*
- q : the query point
- B(c,r): ball of radius r around c
- *dist*: the Euclidean distance between objects

- *L* : the set of lines with size *N*
- q : the query point
- B(c,r): ball of radius r around c
- *dist*: the Euclidean distance between objects
- *angle*: defined between lines

- *L* : the set of lines with size *N*
- q : the query point
- B(c,r): ball of radius r around c
- *dist*: the Euclidean distance between objects
- *angle*: defined between lines
- δ -close: two lines ℓ , ℓ' are δ -close if $sin(angle(\ell, \ell')) \leq \delta$. Similarly we define δ -far/ strictly δ -close/ strictly δ -far

- *L* : the set of lines with size *N*
- q : the query point
- B(c,r): ball of radius r around c
- *dist*: the Euclidean distance between objects
- *angle*: defined between lines
- δ -close: two lines ℓ , ℓ' are δ -close if $sin(angle(\ell, \ell')) \leq \delta$. Similarly we define δ -far/ strictly δ -close/ strictly δ -far
- $CP_{\ell_1 \to \ell_2}$: closest point on ℓ_1 to ℓ_2

Unbounded Module Net Module Parallel Module

MODULES

Unbounded Module - Intuition

• All lines in *L* pass through the origin *o*

Unbounded Module - Intuition

- All lines in *L* pass through the origin *o*
- Data structure:
 - Project all lines onto any sphere S(o,r) to get point set P
 - Build ANN data structure $ANN(P, \epsilon)$

Unbounded Module - Intuition

- All lines in *L* pass through the origin *o*
- Data structure:
 - Project all lines onto any sphere S(o,r) to get point set P
 - Build ANN data structure $ANN(P, \epsilon)$
- Query Algorithm:
 - Project the query on S(o, r) to get q'
 - Find the approximate closest point to q', i.e., $p = ANN_P(q')$
 - Return the corresponding line of \boldsymbol{p}

Unbounded Module

- All lines in L pass through a small ball B(o,r)
- Query is far enough, outside of B(o, R)
- Use the same data structure and query algorithm

Unbounded Module

- All lines in L pass through a small ball B(o, r)
- Query is far enough, outside of B(o, R)
- Use the same data structure and query algorithm

Lemma: if $R \ge \frac{r}{\epsilon \delta}$, the returned line ℓ_p is

- Either an approximate closest line
- Or is δ -close to the closest line ℓ^*

Unbounded Module

- All lines in L pass through a small ball B(o,r)
- Query is far enough, outside of B(o, R)
- Use the same data structure and query algorithm

Lemma: if $R \ge \frac{r}{\epsilon \delta}$, the returned line ℓ_p is

- Either an approximate closest line
- Or is δ -close to the closest line ℓ^*

This helps us further restrict our search to almost parallel lines to ℓ_p

Net Module

• Intuition: sampling points from each line finely enough to get a set of points P, and building an $ANN(P,\epsilon)$ should suffice to find the approximate closest line.

Net Module

• Intuition: sampling points from each line finely enough to get a set of points P, and building an $ANN(P,\epsilon)$ should suffice to find the approximate closest line.

Lemma:

- Let x be the separation parameter: distance between two adjacent samples on a line
- Then
 - Either the returned line ℓ_p is an approximate closest line

- Or
$$dist(q, \ell_p) \leq x/\epsilon$$
Parallel Module - Intuition

• All lines in *L* are parallel

Parallel Module - Intuition

- All lines in *L* are parallel
- Data structure:
 - Project all lines onto any hyper-plane
 g which is perpendicular to all the
 lines to get point set P
 - Build ANN data structure $ANN(P, \epsilon)$

Parallel Module - Intuition

- All lines in *L* are parallel
- Data structure:
 - Project all lines onto any hyper-plane
 g which is perpendicular to all the
 lines to get point set P
 - Build ANN data structure $ANN(P, \epsilon)$
- Query algorithm:
 - Project the query on g to get q'
 - Find the approximate closest point to q', i.e., $p = ANN_P(q')$
 - Return the corresponding line to p

Parallel Module

- All lines in L are δ -close to a base line ℓ_b
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_b
- Query is close enough to g
- Use the same data structure and query algorithm

Parallel Module

- All lines in L are δ -close to a base line ℓ_b
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_b
- Query is close enough to g
- Use the same data structure and query algorithm

Lemma: if $dist(q,g) \leq \frac{D\epsilon}{\delta}$, then

- Either the returned line ℓ_p is an approximate closest line
- Or $dist(q, \ell_p) \leq D$

ℓb

g

Parallel Module

- All lines in L are δ -close to a base line ℓ_b
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_b
- Query is close enough to g
- Use the same data structure and query algorithm

Lemma: if $dist(q,g) \leq \frac{D\epsilon}{\delta}$, then

- Either the returned line ℓ_p is an approximate closest line
- Or $dist(q, \ell_p) \leq D$

Thus, for a set of almost parallel lines, we can use a set of parallel modules to cover a bounded region.

ℓb

g

General Case

- Input lines can have any configuration
- Divergent Case
 - Input lines are $O(\epsilon)$ -far from each other
- Almost Parallel Case
 - Input lines are all $O(\epsilon)$ -close to each other

ALGORITHMS

• Input: a set of *n* lines *S*

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T

- Input: a set of n lines S
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p
- For log *n* iterations
 - Use ℓ_p to find a much closer line ℓ_p' Improvement
 - Update ℓ_p with ℓ_p'

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p
- For log *n* iterations
 - Use ℓ_p to find a much closer line ℓ_p' Improvement
 - Update ℓ_p with ℓ_p'

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p
- For log *n* iterations
 - Use ℓ_p to find a much closer line ℓ_p' Improvement
 - Update ℓ_p with ℓ_p'

Why?

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p
- For log *n* iterations
 - Use ℓ_p to find a much closer line ℓ_p' Improvement
 - Update ℓ_p with ℓ_p'

Let $\ell_1, \ldots, \ell_{\log n}$ be the $\log n$ closest lines to q in the set S

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p
- For log *n* iterations

- Use ℓ_p to find a much closer line ℓ_p' Improvement

– Update ℓ_p with ℓ_p'

Let $\ell_1, \ldots, \ell_{\log n}$ be the $\log n$ closest lines to q in the set SWith high probability at least one of $\{\ell_1, \ldots, \ell_{\log n}\}$ are sampled in T

- $dist(q, \ell_p) \le dist(q, \ell_{\log n})(1 + \epsilon)$
- $\log n$ improvement steps suffices to find an approximate closest line

step

lр

Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

- Data structure
- Query Processing Algorithm

General Case

Search among all lines that are
 e-far from current line using Divergent Case

General Case

- Search among all lines that are ε-far from current line using Divergent Case
- Search among the lines that are almost parallel to line found in previous step using Almost Parallel Case

- Let ℓ be the current line, and ℓ^* be the closest line to q
- Let $x = dist(q, \ell)$
- $dist(q, \ell^*) \leq x$

- Let ℓ be the current line, and ℓ^* be the closest line to q
- Let $x = dist(q, \ell)$
- $dist(q, \ell^*) \le x$ - All potential ℓ^* intersect B(q, x)

- Let ℓ be the current line, and ℓ^* be the closest line to q
- Let $x = dist(q, \ell)$
- $dist(q, \ell^*) \leq x$
 - All potential ℓ^* intersect B(q, x)
 - Good news: we can build a net module inside B(q, x) with separation parameter $x \in {}^2$ to improve over ℓ

- Let ℓ be the current line, and ℓ^* be the closest line to q
- Let $x = dist(q, \ell)$
- $dist(q, \ell^*) \leq x$
 - All potential ℓ^* intersect B(q, x)
 - Good news: we can build a net module inside B(q, x) with separation parameter $x \epsilon^2$ to improve over ℓ
 - Bad news: we don't know this ball in advance

What we know:

- $dist(\ell, \ell^*) \leq 2x$
- Let q' be the projection of q on ℓ

What we know:

- $dist(\ell, \ell^*) \leq 2x$
- Let q' be the projection of q on ℓ

What we know:

- $dist(\ell, \ell^*) \leq 2x$
- Let q' be the projection of q on ℓ - $CP_{\ell \to \ell^*}$ is not farther than $\frac{x}{\epsilon}$ from q' since they are ϵ -far

What we know:

- $dist(\ell, \ell^*) \leq 2x$
- Let q' be the projection of q on ℓ – $CP_{\ell \to \ell^*}$ is not farther than $\frac{x}{\epsilon}$ from q' since they are ϵ -far

 $-B(q', O\left(\frac{x}{\epsilon}\right))$ touches all such lines

For each $\ell \in S$

• Sort all lines ℓ' according to their distance from ℓ

- Sort all lines ℓ' according to their distance from ℓ
- For all $1 \le i \le n$, let S_i be the i^{th} closest lines

- Sort all lines ℓ' according to their distance from ℓ
- For all $1 \le i \le n$, let S_i be the i^{th} closest lines
 - Sort all lines in S_i such as ℓ' according to the position of $CP_{\ell \to \ell'}$

- Sort all lines ℓ' according to their distance from ℓ
- For all $1 \le i \le n$, let S_i be the i^{th} closest lines
 - Sort all lines in S_i such as ℓ' according to the position of $CP_{\ell \to \ell'}$
 - For each interval of lines A in sorted S_i

For each $\ell \in S$

- Sort all lines ℓ' according to their distance from ℓ
- For all $1 \le i \le n$, let S_i be the i^{th} closest lines
 - Sort all lines in S_i such as ℓ' according to the position of $CP_{\ell \to \ell'}$
 - For each interval of lines A in sorted S_i
 - Find smallest ball B_A(o_A, r_A) with its center on ℓ which intersects all lines in A

 $\rightarrow (r_A \leq O(\frac{x}{\epsilon}))$

- Sort all lines ℓ' according to their distance from ℓ
- For all $1 \le i \le n$, let S_i be the i^{th} closest lines
 - Sort all lines in S_i such as ℓ' according to the position of $CP_{\ell \to \ell'}$
 - For each interval of lines A in sorted S_i
 - Find smallest ball B_A(o_A, r_A) with its center on ℓ which intersects all lines in A
 -> (r_A ≤ O(^x/_ε))
 - Construct a net module inside of the ball of $B(o_A, r_A/\epsilon^2)$ with separation $r_A\epsilon^3$ (#samples = $O(n r_A/(\epsilon^2 r_A \epsilon^3)) = O(n/\epsilon^5))$

For each $\ell \in S$

- Sort all lines ℓ' according to their distance from ℓ
- For all $1 \le i \le n$, let S_i be the i^{th} closest lines
 - Sort all lines in S_i such as ℓ' according to the position of $CP_{\ell \to \ell'}$
 - For each interval of lines A in sorted S_i
 - Find smallest ball B_A(o_A, r_A) with its center on ℓ which intersects all lines in A
 -> (r_A ≤ O(^x/_ε))
 - Construct a net module inside of the ball of $B(o_A, r_A/\epsilon^2)$ with separation $r_A\epsilon^3$

(#samples = $O(n r_A/(\epsilon^2 r_A \epsilon^3)) = O(n/\epsilon^5))$

• Construct an unbounded module outside of $B_A\left(o_A, \frac{1}{\epsilon^2}r_A\right)$

Query Processing Algorithm

Given query point q

- Project q on ℓ to get q'
- Use binary search to find the set A of all lines ℓ' that are within distance 2x of ℓ , and that $CP_{\ell \to \ell'}$ is within distance $2x/\epsilon$ of q'

- Project q on ℓ to get q'
- Use binary search to find the set A of all lines ℓ' that are within distance 2x of ℓ , and that $CP_{\ell \to \ell'}$ is within distance $2x/\epsilon$ of q'

- Project q on ℓ to get q'
- Use binary search to find the set A of all lines ℓ' that are within distance 2x of ℓ , and that $CP_{\ell \to \ell'}$ is within distance $2x/\epsilon$ of q'
- Let $B_A(o_A, r_A)$ be the corresponding ball

- Project q on ℓ to get q'
- Use binary search to find the set A of all lines ℓ' that are within distance 2x of ℓ , and that $CP_{\ell \to \ell'}$ is within distance $2x/\epsilon$ of q'
- Let $B_A(o_A, r_A)$ be the corresponding ball
- If $x \in B_A(o_A, \frac{r_A}{\epsilon^2})$ use net module:
 - Find approximate closest line -> done!
 - Or find a line with distance at most $r_A \epsilon^2 \le x \epsilon$ $(r_A \le x/\epsilon)$ -> we improved

- Project q on ℓ to get q'
- Use binary search to find the set A of all lines ℓ' that are within distance 2x of ℓ , and that $CP_{\ell \to \ell'}$ is within distance $2x/\epsilon$ of q'
- Let $B_A(o_A, r_A)$ be the corresponding ball
- If $x \in B_A(o_A, \frac{r_A}{\epsilon^2})$ use net module:
 - Find approximate closest line -> done!
 - Or find a line with distance at most $r_A \epsilon^2 \le x \epsilon$ $(r_A \le x/\epsilon)$ -> we improved
- Otherwise use unbounded module to find the approximate closest line -> done!

All lines are 2ϵ -close to each other.

For each line ℓ

 Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ₁, ℓ₂:

All lines are 2ϵ -close to each other.

For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ₁, ℓ₂:
 - In each slab the relative order of dist_{H(l,o)}(ℓ, ℓ_1) and dist_{H(l,o)}(ℓ, ℓ_2) on the hyper-plane remains the same as we move o on ℓ in the slab

There is a unique ordering of the lines

All lines are 2ϵ -close to each other.

For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ₁, ℓ₂:
 - In each slab the relative order of dist_{H(l,o)}(ℓ , ℓ_1) and dist_{H(l,o)}(ℓ , ℓ_2) on the hyper-plane remains the same as we move o on ℓ in the slab
 - There is a unique ordering of the lines
 - $dist_{H(\ell,o)}(\ell_1,\ell_2)$ on the hyper-plane is monotone

All lines are 2ϵ -close to each other.

For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ₁, ℓ₂:
 - In each slab the relative order of $\operatorname{dist}_{H(\ell,o)}(\ell,\ell_1)$ and $\operatorname{dist}_{H(\ell,o)}(\ell,\ell_2)$ on the hyper-plane remains the same as we move o on ℓ in the slab
 - There is a unique ordering of the lines
 - $dist_{H(\ell,o)}(\ell_1,\ell_2)$ on the hyper-plane is monotone

The minimum ball intersecting any prefix of lines have its center on the boundary of slab

All lines are 2ϵ -close to each other.

For each line ℓ

- Partition the space into slabs using perpendicular hyperplanes to ℓ s.t. for any pair of lines ℓ₁, ℓ₂:
 - In each slab the relative order of $\operatorname{dist}_{H(\ell,o)}(\ell,\ell_1)$ and $\operatorname{dist}_{H(\ell,o)}(\ell,\ell_2)$ on the hyper-plane remains the same as we move o on ℓ in the slab
 - There is a unique ordering of the lines
 - $dist_{H(\ell,o)}(\ell_1,\ell_2)$ on the hyper-plane is monotone

The minimum ball intersecting any prefix of lines have its center on the boundary of slab.

• $O(n^2)$ slabs suffices

For each *i*, let B(o, r) be the smallest ball touching the closest *ith* lines s.t. o ∈ ℓ. We know o would be on the boundary of slab.

For each *i*, let B(o, r) be the smallest ball touching the closest *ith* lines s.t. o ∈ ℓ. We know o would be on the boundary of slab.

For each *i*, let B(o, r) be the smallest ball touching the closest *ith* lines s.t. o ∈ ℓ. We know o would be on the boundary of slab.

- For each *i*, let B(o, r) be the smallest ball touching the closest *ith* lines s.t. o ∈ ℓ. We know o would be on the boundary of slab.
- Let $\delta_0 > \cdots > \delta_t$ be all pairwise angles
- Let $R_0 = \frac{r}{\epsilon \delta_0}$, ..., $R_t = \frac{r}{\epsilon \delta_t}$
- Consider the balls $B(o, R_0), \dots, B(o, R_t)$

- For each *i*, let B(o, r) be the smallest ball touching the closest *ith* lines s.t. o ∈ ℓ. We know o would be on the boundary of slab.
- Let $\delta_0 > \cdots$, > be all pairwise angles
- Let $R_0 = \frac{r}{\epsilon \delta_0}$, ..., $R_t = \frac{r}{\epsilon \delta_t}$
- Consider the balls $B(o, R_0), \dots, B(o, R_t)$
- Build net module inside $B(o, R_0)$

- For each *i*, let B(o, r) be the smallest ball touching the closest *ith* lines s.t. o ∈ ℓ. We know o would be on the boundary of slab.
- Let $\delta_0 > \dots > \delta_t$ be all pairwise angles
- Let $R_0 = \frac{r}{\epsilon \delta_0}$, ..., $R_t = \frac{r}{\epsilon \delta_t}$
- Consider the balls $B(o, R_0), \dots, B(o, R_t)$
- Build net module inside $B(o, R_0)$

- For each *i*, let B(o, r) be the smallest ball touching the closest *ith* lines s.t. o ∈ ℓ. We know o would be on the boundary of slab.
- Let $\delta_0 > \dots > \delta_t$ be all pairwise angles
- Let $R_0 = \frac{r}{\epsilon \delta_0}$, ..., $R_t = \frac{r}{\epsilon \delta_t}$
- Consider the balls $B(o, R_0), \dots, B(o, R_t)$
- Build net module inside $B(o, R_0)$
- For each ball $B(o, R_i)$
 - Build unbounded module on it

- For each *i*, let B(o, r) be the smallest ball touching the closest *ith* lines s.t. o ∈ ℓ. We know o would be on the boundary of slab.
- Let $\delta_0 > \dots > \delta_t$ be all pairwise angles
- Let $R_0 = \frac{r}{\epsilon \delta_0}$, ..., $R_t = \frac{r}{\epsilon \delta_t}$
- Consider the balls $B(o, R_0), \dots, B(o, R_t)$
- Build net module inside $B(o, R_0)$
- For each ball $B(o, R_i)$
 - Build unbounded module on it
 - For each line ℓ_b
 - Build a set of parallel modules with ℓ_b as their base line for all the lines that are δ_i -close to ℓ_b , so that they cover the space between $B(o, R_i)$ and $B(o, R_{i+1})$ with separation $R_{i+1}\epsilon$

- Given q, find the right slab, and retrieve all candidate lines
- Using binary search find *r*

- Given q, find the right slab, and retrieve all candidate lines
- Using binary search find r
- Find largest *i* such that $q \notin B(o, R_i)$

- Given q, find the right slab, and retrieve all candidate lines
- Using binary search find r
- Find largest *i* such that $q \notin B(o, R_i)$
- Use the unbounded module of $B(o, R_i)$ to find a line ℓ' , we know
 - Either ℓ' is an approximate closest line -> done
 - It is δ_{i+1} -close to ℓ^*

- Given q, find the right slab, and retrieve all candidate lines
- Using binary search find *r*
- Find largest *i* such that $q \notin B(o, R_i)$
- Use the unbounded module of $B(o, R_i)$ to find a line ℓ' , we know
 - Either ℓ' is an approximate closest line -> done
 - It is δ_{i+1} -close to ℓ^*
- Use the parallel modules of *l* to find an approximate closest line. -> done

- Given q, find the right slab, and retrieve all candidate lines
- Using binary search find r
- Find largest *i* such that $q \notin B(o, R_i)$
- Use the unbounded module of $B(o, R_i)$ to find a line ℓ' , we know
 - Either ℓ' is an approximate closest line -> done
 - It is δ_{i+1} -close to ℓ^*
- Use the parallel modules of *l* to find an approximate closest line. -> done

• Nearest Line Search Problem

- Nearest Line Search Problem
- Modules: unbounded, net, parallel

- Nearest Line Search Problem
- Modules: unbounded, net, parallel
- Use of random sampling

- Nearest Line Search Problem
- Modules: unbounded, net, parallel
- Use of random sampling
- How to improve given a line

- Nearest Line Search Problem
- Modules: unbounded, net, parallel
- Use of random sampling
- How to improve given a line
- Bounds of our algorithm
 - Polynomial Space:

$$\left(\frac{dN}{\epsilon}\right)^{O(1)} \times S\left(\left(\frac{N}{\epsilon}\right)^{O(1)}, \epsilon\right) = O(N+d)^{O\left(\frac{1}{\epsilon^2}\right)}$$

– Poly-logarithmic query time :

$$(d \log N)^{O(1)} \times \mathcal{T}(\left(\frac{N}{\epsilon}\right)^{O(1)}, \epsilon) = \left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$$

Future Work

- The current result is not good in practice
 - Large exponents
 - Algorithm is complicated
 - Can we get a simpler algorithms?

Future Work

- The current result is not good in practice
 - Large exponents
 - Algorithm is complicated

Can we get a simpler algorithms?

• Generalization to higher dimensional flats

Future Work

- The current result is not good in practice
 - Large exponents
 - Algorithm is complicated

Can we get a simpler algorithms?

- Generalization to higher dimensional flats
- Generalization to other objects, e.g. balls

THANK YOU!