
Approximate Nearest Line Search
in High Dimensions

Sepideh Mahabadi

1

The NLS Problem

• Given: a set of 𝑁 lines 𝐿 in ℝ𝑑

2

The NLS Problem

• Given: a set of 𝑁 lines 𝐿 in ℝ𝑑

• Goal: build a data structure s.t.
– given a query 𝑞, find the closest line

ℓ∗ to 𝑞

3

The NLS Problem

• Given: a set of 𝑁 lines 𝐿 in ℝ𝑑

• Goal: build a data structure s.t.
– given a query 𝑞, find the closest line

ℓ∗ to 𝑞

– polynomial space

– sub-linear query time

4

The NLS Problem

• Given: a set of 𝑁 lines 𝐿 in ℝ𝑑

• Goal: build a data structure s.t.
– given a query 𝑞, find the closest line

ℓ∗ to 𝑞

– polynomial space

– sub-linear query time

Approximation

• Finds an approximate closest line ℓ
𝑑𝑖𝑠𝑡 𝑞, ℓ ≤ 𝑑𝑖𝑠𝑡(𝑞, ℓ∗)(1 + 𝜖)

5

BACKGROUND

Nearest Neighbor Problems

Motivation

Previous Work

Our result

Notation

6

Nearest Neighbor Problem

NN: Given a set of 𝑁 points 𝑃, build a data structure
s.t. given a query point 𝑞, finds the closest point 𝑝∗
to 𝑞.

7

Nearest Neighbor Problem

NN: Given a set of 𝑁 points 𝑃, build a data structure
s.t. given a query point 𝑞, finds the closest point 𝑝∗
to 𝑞.

• Applications: database, information retrieval,

pattern recognition, computer vision
– Features: dimensions
– Objects: points
– Similarity: distance between points

8

Nearest Neighbor Problem

NN: Given a set of 𝑁 points 𝑃, build a data structure
s.t. given a query point 𝑞, finds the closest point 𝑝∗
to 𝑞.

• Applications: database, information retrieval,

pattern recognition, computer vision
– Features: dimensions
– Objects: points
– Similarity: distance between points

• Current solutions suffer from “curse of
dimensionality”:
– Either space or query time is exponential in 𝑑
– Little improvement over linear search

9

Approximate Nearest Neighbor(ANN)

• ANN: Given a set of 𝑁 points 𝑃, build a data
structure s.t. given a query point 𝑞, finds an
approximate closest point 𝑝 to 𝑞, i.e.,

𝑑𝑖𝑠𝑡 𝑞, 𝑝 ≤ 𝑑𝑖𝑠𝑡 𝑞, 𝑝∗ 1 + 𝜖

10

Approximate Nearest Neighbor(ANN)

• ANN: Given a set of 𝑁 points 𝑃, build a data
structure s.t. given a query point 𝑞, finds an
approximate closest point 𝑝 to 𝑞, i.e.,

𝑑𝑖𝑠𝑡 𝑞, 𝑝 ≤ 𝑑𝑖𝑠𝑡 𝑞, 𝑝∗ 1 + 𝜖

• There exist data structures with different

tradeoffs. Example:

– Space: 𝑑𝑁
𝑂

1

𝜖2

– Query time:
𝑑 log 𝑁

𝜖

𝑂 1

11

Motivation for NLS

One of the simplest generalizations of
ANN: data items are represented by 𝑘-
flats (affine subspace) instead of points

12

Motivation for NLS

One of the simplest generalizations of
ANN: data items are represented by 𝑘-
flats (affine subspace) instead of points

• Model data under linear variations

• Unknown or unimportant parameters in
database

13

Motivation for NLS

One of the simplest generalizations of
ANN: data items are represented by 𝑘-
flats (affine subspace) instead of points

• Model data under linear variations

• Unknown or unimportant parameters in
database

• Example:
– Varying light gain parameter of images

– Each image/point becomes a line

– Search for the closest line to the query image

14

Previous and Related Work

15

• Magen[02]: Nearest Subspace Search

– Query time is fast : 𝑑 + log 𝑁 +
1

𝜖

𝑂 1

– Space is super-polynomial : 2 log 𝑁 𝑂 1

Previous and Related Work

16

• Magen[02]: Nearest Subspace Search

– Query time is fast : 𝑑 + log 𝑁 +
1

𝜖

𝑂 1

– Space is super-polynomial : 2 log 𝑁 𝑂 1

Dual Problem: Database is a set of points, query is a 𝑘-flat
• [AIKN] for 1-flat: for any 𝑡 > 0

– Query time: 𝑂 𝑑3𝑁0.5+𝑡

– Space: 𝑑2𝑁
𝑂

1

𝜖2+
1

𝑡2

Previous and Related Work

17

• Magen[02]: Nearest Subspace Search

– Query time is fast : 𝑑 + log 𝑁 +
1

𝜖

𝑂 1

– Space is super-polynomial : 2 log 𝑁 𝑂 1

Dual Problem: Database is a set of points, query is a 𝑘-flat
• [AIKN] for 1-flat: for any 𝑡 > 0

– Query time: 𝑂 𝑑3𝑁0.5+𝑡

– Space: 𝑑2𝑁
𝑂

1

𝜖2+
1

𝑡2

• Very recently [MNSS] extended it for 𝑘-flats

– Query time 𝑂 𝑛
𝑘

𝑘+1−𝜌
+𝑡

– Space: 𝑂(𝑛
1+

𝜎𝑘

𝑘+1−𝜌 + 𝑛 log
𝑂

1

𝑡 𝑛)

Our Result

We give a randomized algorithm that for any sufficiently
small 𝜖 reports a 1 + 𝜖 -approximate solution with high
probability

• Space: 𝑁 + 𝑑
𝑂

1

𝜖2

• Time : 𝑑 + log 𝑁 +
1

𝜖

𝑂 1

18

Our Result

We give a randomized algorithm that for any sufficiently
small 𝜖 reports a 1 + 𝜖 -approximate solution with high
probability

• Space: 𝑁 + 𝑑
𝑂

1

𝜖2

• Time : 𝑑 + log 𝑁 +
1

𝜖

𝑂 1

• Matches up to polynomials, the performance of best
algorithm for ANN. No exponential dependence on 𝑑

19

Our Result

We give a randomized algorithm that for any sufficiently
small 𝜖 reports a 1 + 𝜖 -approximate solution with high
probability

• Space: 𝑁 + 𝑑
𝑂

1

𝜖2

• Time : 𝑑 + log 𝑁 +
1

𝜖

𝑂 1

• Matches up to polynomials, the performance of best
algorithm for ANN. No exponential dependence on 𝑑

• The first algorithm with poly log query time and
polynomial space for objects other than points

20

Our Result

We give a randomized algorithm that for any sufficiently
small 𝜖 reports a 1 + 𝜖 -approximate solution with high
probability

• Space: 𝑁 + 𝑑
𝑂

1

𝜖2

• Time : 𝑑 + log 𝑁 +
1

𝜖

𝑂 1

• Matches up to polynomials, the performance of best
algorithm for ANN. No exponential dependence on 𝑑

• The first algorithm with poly log query time and
polynomial space for objects other than points

• Only uses reductions to ANN

21

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point

22

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐

23

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐
• 𝑑𝑖𝑠𝑡: the Euclidean distance

between objects

24

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐
• 𝑑𝑖𝑠𝑡: the Euclidean distance

between objects
• 𝑎𝑛𝑔𝑙𝑒: defined between lines

25

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐
• 𝑑𝑖𝑠𝑡: the Euclidean distance

between objects
• 𝑎𝑛𝑔𝑙𝑒: defined between lines
• 𝛿-close: two lines ℓ , ℓ′ are 𝛿-close

if sin(𝑎𝑛𝑔𝑙𝑒 ℓ, ℓ′) ≤ 𝛿. Similarly
we define 𝛿-far/ strictly 𝛿-close/
strictly 𝛿-far

26

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐
• 𝑑𝑖𝑠𝑡: the Euclidean distance

between objects
• 𝑎𝑛𝑔𝑙𝑒: defined between lines
• 𝛿-close: two lines ℓ , ℓ′ are 𝛿-close

if sin(𝑎𝑛𝑔𝑙𝑒 ℓ, ℓ′) ≤ 𝛿. Similarly
we define 𝛿-far/ strictly 𝛿-close/
strictly 𝛿-far

• 𝐶𝑃ℓ1→ℓ2
: closest point on ℓ1 to ℓ2

27

MODULES

Unbounded Module

Net Module

Parallel Module

28

Unbounded Module - Intuition

• All lines in 𝐿 pass through the origin
𝑜

29

Unbounded Module - Intuition

• All lines in 𝐿 pass through the origin
𝑜

• Data structure:
– Project all lines onto any sphere

𝑆 𝑜, 𝑟 to get point set 𝑃

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖)

30

Unbounded Module - Intuition

• All lines in 𝐿 pass through the origin
𝑜

• Data structure:
– Project all lines onto any sphere

𝑆 𝑜, 𝑟 to get point set 𝑃

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖)

• Query Algorithm:
– Project the query on 𝑆(𝑜, 𝑟) to get 𝑞′

– Find the approximate closest point to
𝑞′, i.e., 𝑝 = 𝐴𝑁𝑁𝑃 𝑞′

– Return the corresponding line of 𝑝

31

Unbounded Module

• All lines in 𝐿 pass through a small ball
𝐵 𝑜, 𝑟

• Query is far enough, outside of 𝐵(𝑜, 𝑅)
• Use the same data structure and
 query algorithm

32

Unbounded Module

• All lines in 𝐿 pass through a small ball
𝐵 𝑜, 𝑟

• Query is far enough, outside of 𝐵(𝑜, 𝑅)
• Use the same data structure and
 query algorithm

Lemma: if 𝑅 ≥
𝑟

𝜖𝛿
 , the returned line ℓ𝑝 is

• Either an approximate closest line
• Or is 𝛿-close to the closest line ℓ∗

33

Unbounded Module

• All lines in 𝐿 pass through a small ball
𝐵 𝑜, 𝑟

• Query is far enough, outside of 𝐵(𝑜, 𝑅)
• Use the same data structure and
 query algorithm

Lemma: if 𝑅 ≥
𝑟

𝜖𝛿
 , the returned line ℓ𝑝 is

• Either an approximate closest line
• Or is 𝛿-close to the closest line ℓ∗

This helps us further restrict our search to
almost parallel lines to ℓ𝑝

34

Net Module

• Intuition: sampling points from each
line finely enough to get a set of points
𝑃, and building an 𝐴𝑁𝑁(𝑃, 𝜖) should
suffice to find the approximate closest
line.

38

Net Module

• Intuition: sampling points from each
line finely enough to get a set of points
𝑃, and building an 𝐴𝑁𝑁(𝑃, 𝜖) should
suffice to find the approximate closest
line.

Lemma:
• Let 𝑥 be the separation parameter:

distance between two adjacent
samples on a line

• Then
– Either the returned line ℓ𝑝 is an

approximate closest line

– Or 𝑑𝑖𝑠𝑡 𝑞, ℓ𝑝 ≤ 𝑥/𝜖

39

Parallel Module - Intuition

• All lines in 𝐿 are parallel

42

Parallel Module - Intuition

• All lines in 𝐿 are parallel

• Data structure:
– Project all lines onto any hyper-plane

𝑔 which is perpendicular to all the
lines to get point set 𝑃

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖)

43

Parallel Module - Intuition

• All lines in 𝐿 are parallel

• Data structure:
– Project all lines onto any hyper-plane

𝑔 which is perpendicular to all the
lines to get point set 𝑃

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖)

• Query algorithm:
– Project the query on 𝑔 to get 𝑞′

– Find the approximate closest point to
𝑞′, i.e., 𝑝 = 𝐴𝑁𝑁𝑃 𝑞′

– Return the corresponding line to 𝑝

44

Parallel Module

• All lines in 𝐿 are 𝛿-close to a base line ℓ𝑏
• Project the lines onto a hyper-plane 𝑔 which is

perpendicular to ℓ𝑏
• Query is close enough to 𝑔
• Use the same data structure and query algorithm

45

Parallel Module

• All lines in 𝐿 are 𝛿-close to a base line ℓ𝑏
• Project the lines onto a hyper-plane 𝑔 which is

perpendicular to ℓ𝑏
• Query is close enough to 𝑔
• Use the same data structure and query algorithm

Lemma: if 𝑑𝑖𝑠𝑡 𝑞, 𝑔 ≤
𝐷𝜖

𝛿
 , then

• Either the returned line ℓ𝑝 is an approximate closest
line

• Or 𝑑𝑖𝑠𝑡 𝑞, ℓ𝑝 ≤ 𝐷

46

Parallel Module

• All lines in 𝐿 are 𝛿-close to a base line ℓ𝑏
• Project the lines onto a hyper-plane 𝑔 which is

perpendicular to ℓ𝑏
• Query is close enough to 𝑔
• Use the same data structure and query algorithm

Lemma: if 𝑑𝑖𝑠𝑡 𝑞, 𝑔 ≤
𝐷𝜖

𝛿
 , then

• Either the returned line ℓ𝑝 is an approximate closest
line

• Or 𝑑𝑖𝑠𝑡 𝑞, ℓ𝑝 ≤ 𝐷

Thus, for a set of almost parallel lines, we can use a set
of parallel modules to cover a bounded region.

47

ALGORITHMS

General Case

• Input lines can have any configuration

• Divergent Case

• Input lines are 𝑂(𝜖)-far from each other

• Almost Parallel Case

• Input lines are all 𝑂(𝜖)-close to each other

51

Outline of the Algorithms

• Input: a set of 𝑛 lines 𝑆

52

Outline of the Algorithms

• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇

53

Outline of the Algorithms

• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇

• Solve the problem over 𝑇 to get a line ℓ𝑝

54

Outline of the Algorithms

• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇

• Solve the problem over 𝑇 to get a line ℓ𝑝
• For log 𝑛 iterations

– Use ℓ𝑝 to find a much closer line ℓ𝑝′

– Update ℓ𝑝 with ℓ𝑝
′

55

Improvement
step

Outline of the Algorithms

• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇

• Solve the problem over 𝑇 to get a line ℓ𝑝
• For log 𝑛 iterations

– Use ℓ𝑝 to find a much closer line ℓ𝑝′

– Update ℓ𝑝 with ℓ𝑝
′

56

Improvement
step

Outline of the Algorithms

• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇

• Solve the problem over 𝑇 to get a line ℓ𝑝
• For log 𝑛 iterations

– Use ℓ𝑝 to find a much closer line ℓ𝑝′

– Update ℓ𝑝 with ℓ𝑝
′

Why?

57

Improvement
step

Outline of the Algorithms

• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇

• Solve the problem over 𝑇 to get a line ℓ𝑝
• For log 𝑛 iterations

– Use ℓ𝑝 to find a much closer line ℓ𝑝′

– Update ℓ𝑝 with ℓ𝑝
′

Let ℓ1 , … , ℓlog 𝑛 be the log 𝑛 closest lines to 𝑞 in the set 𝑆

58

Improvement
step

Outline of the Algorithms

• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇

• Solve the problem over 𝑇 to get a line ℓ𝑝
• For log 𝑛 iterations

– Use ℓ𝑝 to find a much closer line ℓ𝑝′

– Update ℓ𝑝 with ℓ𝑝
′

Let ℓ1 , … , ℓlog 𝑛 be the log 𝑛 closest lines to 𝑞 in the set 𝑆

With high probability at least one of {ℓ1, … , ℓlog 𝑛} are
sampled in 𝑇

– 𝑑𝑖𝑠𝑡 𝑞, ℓ𝑝 ≤ 𝑑𝑖𝑠𝑡 𝑞, ℓlog 𝑛 (1 + 𝜖)

– log 𝑛 improvement steps suffices to find an approximate closest
line

 59

Improvement
step

Improvement Step

Given a line ℓ, how to improve it, i.e., find a
closer line?

60

Improvement Step

Given a line ℓ, how to improve it, i.e., find a
closer line?

• Data structure

• Query Processing Algorithm

61

General Case

• Search among all lines that are 𝜖-far from
current line using Divergent Case

62

General Case

• Search among all lines that are 𝜖-far from
current line using Divergent Case

• Search among the lines that are almost
parallel to line found in previous step using
Almost Parallel Case

63

Divergent Case

Assume any two lines are 𝜖-far; they diverge
quickly.

64

Divergent Case

Assume any two lines are 𝜖-far; they diverge
quickly.

• Let ℓ be the current line, and ℓ∗ be the closest

line to 𝑞
• Let 𝑥 = 𝑑𝑖𝑠𝑡(𝑞, ℓ)
• 𝑑𝑖𝑠𝑡 𝑞, ℓ∗ ≤ 𝑥

65

Divergent Case

Assume any two lines are 𝜖-far; they diverge
quickly.

• Let ℓ be the current line, and ℓ∗ be the closest

line to 𝑞
• Let 𝑥 = 𝑑𝑖𝑠𝑡(𝑞, ℓ)
• 𝑑𝑖𝑠𝑡 𝑞, ℓ∗ ≤ 𝑥

– All potential ℓ∗ intersect 𝐵(𝑞, 𝑥)

66

Divergent Case

Assume any two lines are 𝜖-far; they diverge
quickly.

• Let ℓ be the current line, and ℓ∗ be the closest

line to 𝑞
• Let 𝑥 = 𝑑𝑖𝑠𝑡(𝑞, ℓ)
• 𝑑𝑖𝑠𝑡 𝑞, ℓ∗ ≤ 𝑥

– All potential ℓ∗ intersect 𝐵(𝑞, 𝑥)
– Good news: we can build a net module inside

𝐵 𝑞, 𝑥 with separation parameter 𝑥ϵ2 to
improve over ℓ

67

Divergent Case

Assume any two lines are 𝜖-far; they diverge
quickly.

• Let ℓ be the current line, and ℓ∗ be the closest

line to 𝑞
• Let 𝑥 = 𝑑𝑖𝑠𝑡(𝑞, ℓ)
• 𝑑𝑖𝑠𝑡 𝑞, ℓ∗ ≤ 𝑥

– All potential ℓ∗ intersect 𝐵(𝑞, 𝑥)
– Good news: we can build a net module inside

𝐵 𝑞, 𝑥 with separation parameter 𝑥ϵ2 to
improve over ℓ

– Bad news: we don’t know this ball in advance

68

Divergent Case contd.

What we know:

• 𝑑𝑖𝑠𝑡 ℓ, ℓ∗ ≤ 2𝑥
• Let 𝑞′ be the projection of 𝑞 on ℓ

69

Divergent Case contd.

What we know:

• 𝑑𝑖𝑠𝑡 ℓ, ℓ∗ ≤ 2𝑥
• Let 𝑞′ be the projection of 𝑞 on ℓ

70

Divergent Case contd.

What we know:

• 𝑑𝑖𝑠𝑡 ℓ, ℓ∗ ≤ 2𝑥
• Let 𝑞′ be the projection of 𝑞 on ℓ

– 𝐶𝑃ℓ→ℓ∗ is not farther than
𝑥

𝜖
 from 𝑞′

since they are 𝜖-far

71

Divergent Case contd.

What we know:

• 𝑑𝑖𝑠𝑡 ℓ, ℓ∗ ≤ 2𝑥
• Let 𝑞′ be the projection of 𝑞 on ℓ

– 𝐶𝑃ℓ→ℓ∗ is not farther than
𝑥

𝜖
 from 𝑞′

since they are 𝜖-far

– 𝑩(𝒒′, 𝑶
𝒙

𝝐
) touches all such lines

72

Data Structure

For each ℓ ∈ 𝑆

• Sort all lines ℓ′ according to their distance from ℓ

73

Data Structure

For each ℓ ∈ 𝑆

• Sort all lines ℓ′ according to their distance from ℓ

• For all 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖 be the 𝑖𝑡ℎ closest lines

74

Data Structure

For each ℓ ∈ 𝑆

• Sort all lines ℓ′ according to their distance from ℓ

• For all 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖 be the 𝑖𝑡ℎ closest lines

– Sort all lines in 𝑆𝑖 such as ℓ′ according to the
position of 𝐶𝑃ℓ→ℓ′

75

Data Structure

For each ℓ ∈ 𝑆

• Sort all lines ℓ′ according to their distance from ℓ

• For all 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖 be the 𝑖𝑡ℎ closest lines

– Sort all lines in 𝑆𝑖 such as ℓ′ according to the
position of 𝐶𝑃ℓ→ℓ′

– For each interval of lines 𝐴 in sorted 𝑆𝑖

76

Data Structure

For each ℓ ∈ 𝑆

• Sort all lines ℓ′ according to their distance from ℓ

• For all 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖 be the 𝑖𝑡ℎ closest lines

– Sort all lines in 𝑆𝑖 such as ℓ′ according to the
position of 𝐶𝑃ℓ→ℓ′

– For each interval of lines 𝐴 in sorted 𝑆𝑖

• Find smallest ball 𝐵𝐴(oA , rA) with its
center on ℓ which intersects all lines in 𝐴

-> (𝑟𝐴 ≤ 𝑂(
𝑥

𝜖
))

77

Data Structure

For each ℓ ∈ 𝑆

• Sort all lines ℓ′ according to their distance from ℓ

• For all 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖 be the 𝑖𝑡ℎ closest lines

– Sort all lines in 𝑆𝑖 such as ℓ′ according to the
position of 𝐶𝑃ℓ→ℓ′

– For each interval of lines 𝐴 in sorted 𝑆𝑖

• Find smallest ball 𝐵𝐴(oA , rA) with its
center on ℓ which intersects all lines in 𝐴

-> (𝑟𝐴 ≤ 𝑂(
𝑥

𝜖
))

• Construct a net module inside of the ball
of 𝐵(𝑜𝐴, 𝑟𝐴/𝜖2) with separation 𝑟𝐴𝜖3

(#samples = O(𝑛 𝑟𝐴/(𝜖2𝑟𝐴𝜖 3)) = 𝑂(𝑛/𝜖 5))

78

Data Structure

For each ℓ ∈ 𝑆

• Sort all lines ℓ′ according to their distance from ℓ

• For all 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖 be the 𝑖𝑡ℎ closest lines

– Sort all lines in 𝑆𝑖 such as ℓ′ according to the
position of 𝐶𝑃ℓ→ℓ′

– For each interval of lines 𝐴 in sorted 𝑆𝑖

• Find smallest ball 𝐵𝐴(oA , rA) with its
center on ℓ which intersects all lines in 𝐴

-> (𝑟𝐴 ≤ 𝑂(
𝑥

𝜖
))

• Construct a net module inside of the ball
of 𝐵(𝑜𝐴, 𝑟𝐴/𝜖2) with separation 𝑟𝐴𝜖3

(#samples = O(𝑛 𝑟𝐴/(𝜖2𝑟𝐴𝜖 3)) = 𝑂(𝑛/𝜖 5))

• Construct an unbounded module outside

of 𝐵𝐴 𝑜𝐴 ,
1

𝜖2
𝑟𝐴

79

Query Processing Algorithm

Given query point 𝑞

80

Query Processing Algorithm

Given query point 𝑞

– Project 𝑞 on ℓ to get 𝑞′

– Use binary search to find the set 𝐴 of all lines
ℓ′ that are within distance 2𝑥 of ℓ, and that
𝐶𝑃ℓ→ℓ′ is within distance 2𝑥/𝜖 of 𝑞′

81

Query Processing Algorithm

Given query point 𝑞

– Project 𝑞 on ℓ to get 𝑞′

– Use binary search to find the set 𝐴 of all lines
ℓ′ that are within distance 2𝑥 of ℓ, and that
𝐶𝑃ℓ→ℓ′ is within distance 2𝑥/𝜖 of 𝑞′

82

Query Processing Algorithm

Given query point 𝑞

– Project 𝑞 on ℓ to get 𝑞′

– Use binary search to find the set 𝐴 of all lines
ℓ′ that are within distance 2𝑥 of ℓ, and that
𝐶𝑃ℓ→ℓ′ is within distance 2𝑥/𝜖 of 𝑞′

– Let 𝐵𝐴(𝑜𝐴, 𝑟𝐴) be the corresponding ball

83

Query Processing Algorithm

Given query point 𝑞

– Project 𝑞 on ℓ to get 𝑞′

– Use binary search to find the set 𝐴 of all lines
ℓ′ that are within distance 2𝑥 of ℓ, and that
𝐶𝑃ℓ→ℓ′ is within distance 2𝑥/𝜖 of 𝑞′

– Let 𝐵𝐴(𝑜𝐴, 𝑟𝐴) be the corresponding ball

– If 𝑥 ∈ 𝐵𝐴(𝑜𝐴,
𝑟𝐴

𝜖2) use net module:

• Find approximate closest line -> done!

• Or find a line with distance at most
𝑟𝐴𝜖2 ≤ 𝑥𝜖 (𝑟𝐴 ≤ 𝑥/𝜖) -> we improved

84

Query Processing Algorithm

Given query point 𝑞

– Project 𝑞 on ℓ to get 𝑞′

– Use binary search to find the set 𝐴 of all lines
ℓ′ that are within distance 2𝑥 of ℓ, and that
𝐶𝑃ℓ→ℓ′ is within distance 2𝑥/𝜖 of 𝑞′

– Let 𝐵𝐴(𝑜𝐴, 𝑟𝐴) be the corresponding ball

– If 𝑥 ∈ 𝐵𝐴(𝑜𝐴,
𝑟𝐴

𝜖2) use net module:

• Find approximate closest line -> done!

• Or find a line with distance at most
𝑟𝐴𝜖2 ≤ 𝑥𝜖 (𝑟𝐴 ≤ 𝑥/𝜖) -> we improved

– Otherwise use unbounded module to find the
approximate closest line -> done!

85

Almost Parallel

All lines are 2𝜖-close to each other.
For each line ℓ
• Partition the space into slabs using

perpendicular hyperplanes to ℓ s.t. for
any pair of lines ℓ1 , ℓ2:

86

slab

Almost Parallel

All lines are 2𝜖-close to each other.
For each line ℓ
• Partition the space into slabs using

perpendicular hyperplanes to ℓ s.t. for
any pair of lines ℓ1 , ℓ2:
– In each slab the relative order of

dist𝐻 ℓ,𝑜 ℓ, ℓ1 and 𝑑𝑖𝑠𝑡𝐻 ℓ,𝑜 (ℓ, ℓ2) on
the hyper-plane remains the same as we
move 𝑜 on ℓ in the slab

There is a unique ordering of the lines

87

Almost Parallel

All lines are 2𝜖-close to each other.
For each line ℓ
• Partition the space into slabs using

perpendicular hyperplanes to ℓ s.t. for
any pair of lines ℓ1 , ℓ2:
– In each slab the relative order of

dist𝐻 ℓ,𝑜 ℓ, ℓ1 and 𝑑𝑖𝑠𝑡𝐻 ℓ,𝑜 (ℓ, ℓ2) on
the hyper-plane remains the same as we
move 𝑜 on ℓ in the slab

There is a unique ordering of the lines

– 𝑑𝑖𝑠𝑡𝐻 ℓ,𝑜 ℓ1 , ℓ2 on the hyper-plane is
monotone

88

Almost Parallel

All lines are 2𝜖-close to each other.
For each line ℓ
• Partition the space into slabs using

perpendicular hyperplanes to ℓ s.t. for
any pair of lines ℓ1 , ℓ2:
– In each slab the relative order of

dist𝐻 ℓ,𝑜 ℓ, ℓ1 and 𝑑𝑖𝑠𝑡𝐻 ℓ,𝑜 (ℓ, ℓ2) on
the hyper-plane remains the same as we
move 𝑜 on ℓ in the slab

There is a unique ordering of the lines

– 𝑑𝑖𝑠𝑡𝐻 ℓ,𝑜 ℓ1 , ℓ2 on the hyper-plane is
monotone

The minimum ball intersecting any prefix of
lines have its center on the boundary of slab

89

Almost Parallel

All lines are 2𝜖-close to each other.
For each line ℓ
• Partition the space into slabs using

perpendicular hyperplanes to ℓ s.t. for
any pair of lines ℓ1 , ℓ2:
– In each slab the relative order of

dist𝐻 ℓ,𝑜 ℓ, ℓ1 and 𝑑𝑖𝑠𝑡𝐻 ℓ,𝑜 (ℓ, ℓ2) on
the hyper-plane remains the same as we
move 𝑜 on ℓ in the slab

There is a unique ordering of the lines

– 𝑑𝑖𝑠𝑡𝐻 ℓ,𝑜 ℓ1 , ℓ2 on the hyper-plane is
monotone

The minimum ball intersecting any prefix of
lines have its center on the boundary of slab.

• 𝑂 𝑛2 slabs suffices
90

Data Structure in Each Slab

• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ. We
know 𝑜 would be on the boundary of slab.

91

Data Structure in Each Slab

• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ. We
know 𝑜 would be on the boundary of slab.

92

Data Structure in Each Slab

• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ. We
know 𝑜 would be on the boundary of slab.

93

Data Structure in Each Slab

• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ. We
know 𝑜 would be on the boundary of slab.

• Let 𝛿0 > ⋯ > 𝛿𝑡 be all pairwise angles

• Let 𝑅0 =
𝑟

𝜖𝛿0
, … , 𝑅𝑡 =

𝑟

𝜖𝛿𝑡

• Consider the balls 𝐵 𝑜, 𝑅0 , … , 𝐵 𝑜, 𝑅𝑡

94

Data Structure in Each Slab

• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ. We
know 𝑜 would be on the boundary of slab.

• Let 𝛿0 > ⋯ , > be all pairwise angles

• Let 𝑅0 =
𝑟

𝜖𝛿0
, … , 𝑅𝑡 =

𝑟

𝜖𝛿𝑡

• Consider the balls 𝐵 𝑜, 𝑅0 , … , 𝐵 𝑜, 𝑅𝑡

• Build net module inside 𝐵 𝑜, 𝑅0

95

Data Structure in Each Slab

• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ. We
know 𝑜 would be on the boundary of slab.

• Let 𝛿0 > ⋯ > 𝛿𝑡 be all pairwise angles

• Let 𝑅0 =
𝑟

𝜖𝛿0
, … , 𝑅𝑡 =

𝑟

𝜖𝛿𝑡

• Consider the balls 𝐵 𝑜, 𝑅0 , … , 𝐵 𝑜, 𝑅𝑡

• Build net module inside 𝐵 𝑜, 𝑅0

96

Data Structure in Each Slab

• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ. We
know 𝑜 would be on the boundary of slab.

• Let 𝛿0 > ⋯ > 𝛿𝑡 be all pairwise angles

• Let 𝑅0 =
𝑟

𝜖𝛿0
, … , 𝑅𝑡 =

𝑟

𝜖𝛿𝑡

• Consider the balls 𝐵 𝑜, 𝑅0 , … , 𝐵 𝑜, 𝑅𝑡

• Build net module inside 𝐵 𝑜, 𝑅0

• For each ball 𝐵(𝑜, 𝑅𝑖)

– Build unbounded module on it

97

Data Structure in Each Slab

• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ. We
know 𝑜 would be on the boundary of slab.

• Let 𝛿0 > ⋯ > 𝛿𝑡 be all pairwise angles

• Let 𝑅0 =
𝑟

𝜖𝛿0
, … , 𝑅𝑡 =

𝑟

𝜖𝛿𝑡

• Consider the balls 𝐵 𝑜, 𝑅0 , … , 𝐵 𝑜, 𝑅𝑡

• Build net module inside 𝐵 𝑜, 𝑅0

• For each ball 𝐵(𝑜, 𝑅𝑖)

– Build unbounded module on it

– For each line ℓ𝑏

• Build a set of parallel modules with ℓ𝑏
as their base line for all the lines that
are 𝛿𝑖-close to ℓ𝑏 , so that they cover
the space between 𝐵(𝑜, 𝑅𝑖) and
𝐵(𝑜, 𝑅𝑖+1) with separation 𝑅𝑖+1𝜖

 98

Query Processing Algorithm

• Given 𝑞, find the right slab, and
retrieve all candidate lines

• Using binary search find 𝑟

99

Query Processing Algorithm

• Given 𝑞, find the right slab, and
retrieve all candidate lines

• Using binary search find 𝑟

• Find largest 𝑖 such that 𝑞 ∉ 𝐵(𝑜, 𝑅𝑖)

100

Query Processing Algorithm

• Given 𝑞, find the right slab, and
retrieve all candidate lines

• Using binary search find 𝑟

• Find largest 𝑖 such that 𝑞 ∉ 𝐵(𝑜, 𝑅𝑖)

• Use the unbounded module of
𝐵(𝑜, 𝑅𝑖) to find a line ℓ′, we know

– Either ℓ′ is an approximate
closest line -> done

– It is 𝛿𝑖+1-close to ℓ∗

101

Query Processing Algorithm

• Given 𝑞, find the right slab, and
retrieve all candidate lines

• Using binary search find 𝑟

• Find largest 𝑖 such that 𝑞 ∉ 𝐵(𝑜, 𝑅𝑖)

• Use the unbounded module of
𝐵(𝑜, 𝑅𝑖) to find a line ℓ′, we know

– Either ℓ′ is an approximate
closest line -> done

– It is 𝛿𝑖+1-close to ℓ∗

• Use the parallel modules of ℓ′ to
find an approximate closest line. ->
done

102

Query Processing Algorithm

• Given 𝑞, find the right slab, and
retrieve all candidate lines

• Using binary search find 𝑟

• Find largest 𝑖 such that 𝑞 ∉ 𝐵(𝑜, 𝑅𝑖)

• Use the unbounded module of
𝐵(𝑜, 𝑅𝑖) to find a line ℓ′, we know

– Either ℓ′ is an approximate
closest line -> done

– It is 𝛿𝑖+1-close to ℓ∗

• Use the parallel modules of ℓ′ to
find an approximate closest line. ->
done

103

Summary

• Nearest Line Search Problem

104

Summary

• Nearest Line Search Problem

• Modules: unbounded, net, parallel

105

Summary

• Nearest Line Search Problem

• Modules: unbounded, net, parallel

• Use of random sampling

106

Summary

• Nearest Line Search Problem

• Modules: unbounded, net, parallel

• Use of random sampling

• How to improve given a line

107

Summary

• Nearest Line Search Problem

• Modules: unbounded, net, parallel

• Use of random sampling

• How to improve given a line

• Bounds of our algorithm

– Polynomial Space:

𝑑𝑁

𝜖

𝑂 1
× 𝒮

𝑁

𝜖

𝑂 1
, 𝜖 = 𝑂 𝑁 + 𝑑

𝑂
1

𝜖2

– Poly-logarithmic query time :

𝑑 log 𝑁 𝑂 1 × 𝒯(
𝑁

𝜖

𝑂 1
, 𝜖) = 𝑑 + log 𝑁 +

1

𝜖

𝑂 1

108

Future Work

• The current result is not good in practice

– Large exponents

– Algorithm is complicated

Can we get a simpler algorithms?

109

Future Work

• The current result is not good in practice

– Large exponents

– Algorithm is complicated

Can we get a simpler algorithms?

• Generalization to higher dimensional flats

110

Future Work

• The current result is not good in practice

– Large exponents

– Algorithm is complicated

Can we get a simpler algorithms?

• Generalization to higher dimensional flats

• Generalization to other objects, e.g. balls

111

THANK YOU!

112

