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The NLS Problem

e Given: asetof N lines L in R?
e Goal: build a data structure s.t.

.
— given a query q, find the closest line / /
£* toq o

— polynomial space
— sub-linear query time
Approximation

* Finds an approximate closest line £
dist(q,?) < dist(q,?")(1+€)
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Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure
s.t. given a query point g, finds the closest point p*
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.

=@



Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure
s.t. given a query point g, finds the closest point p*

togq.

e Applications: database, information retrieval,
pattern recognition, computer vision

— Features: dimensions
— Objects: points
— Similarity: distance between points

el )
=@



Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure
s.t. given a query point g, finds the closest point p*

togq.

e Applications: database, information retrieval,
pattern recognition, computer vision
— Features: dimensions
— Objects: points
— Similarity: distance between points
e Current solutions suffer from “curse of "

dimensionality”:
— Either space or query time is exponential in d

— Little improvement over linear search

.
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Approximate Nearest Neighbor(ANN)

* ANN: Given a set of N points P, build a data
structure s.t. given a query point g, finds an
approximate closest point p tog, i.e.,

dist(q,p) < dist(q,p")(1 + €)
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Approximate Nearest Neighbor(ANN)

* ANN: Given a set of N points P, build a data
structure s.t. given a query point g, finds an
approximate closest point p tog, i.e.,

dist(q,p) < dist(q,p")(1 + €)

e There exist data structures with different p
tradeoffs. Example: ‘
1
— Space: (dN)O(e_Z) ®
0(1) 1 e,
— Query time: (d log N) Toob
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Motivation for NLS

One of the simplest generalizations of
ANN: data items are represented by k-
flats (affine subspace) instead of points

e Model data under linear variations

 Unknown or unimportant parameters in
database

e Example:
— Varying light gain parameter of images
— Each image/point becomes a line
— Search for the closest line to the query image
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Previous and Related Work

* Magen[02]: Nearest Subspace Search

1\ 0D
— Query time is fast : (d + log N + Z)

— Space is super-polynomial : 2(log MO

Dual Problem: Database s a set of points, query is a k-flat

e [AIKN] for 1-flat:foranyt > 0O
— Query time: 0(d3N?%>*t)

— Space: dZNO(el_ﬁtiz)
* Very recently [MNSS] extended it for k-flats

k
— Query time O(nk+1-P+t)
1+—2E 0(1)
— Space: O(n k+1-p +nlog "\t/n)
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Our Result

We give a randomized algorithm that for any sufficiently
small € reportsa (1 + €)-approximate solution with high
probability

1
e Space: (N + d)o(e_Z)
0(1)
* Time: (d + log N +§)
 Matches up to polynomials, the performance of best
algorithm for ANN. No exponential dependence on d

* The first algorithm with poly log query time and
polynomial space for objects other than points

* Only uses reductions to ANN
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Notation

L : the set of lines with size N
g : the query point
B(c,r): ball of radius r around ¢

dist: the Euclidean distance
between objects

angle: defined between lines

&-close: two lines £, £ are 6-close
if sin(angle(#,£')) < 6. Similarly
we define §-far/ strictly §-close/
strictly d-far

CPp. _p,: closest point on ¢4 to ¥




Unbounded Module
Net Module
Parallel Module

MODULES
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Unbounded Module - Intuition

e All linesin L pass through the origin
0

 Data structure:

— Project all lines onto any sphere
S(o,r) to get point set P

— Build ANN data structure ANN (P, €)
 Query Algorithm:

— Project the query on S(o,r) to get q’

— Find the approximate closest point to
q,ie.,p=ANN:(q")
— Return the corresponding line of p




Unbounded Module

All lines in L pass through a small ball
B(o, 1)

Query is far enough, outside of B(o0, R)
Use the same data structure and
query algorithm

q
o
qQ.
(o.R)
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Unbounded Module

e Alllines in L pass through a small ball
B(o,7) K
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* Use the same data structure and
query algorithm
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e Either an approximate closest line
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Unbounded Module

e Alllines in L pass through a small ball
B(o,7) K

* Query is far enough, outside of B(o,R)
* Use the same data structure and
query algorithm

o
q.
(o,R)

B

Lemma: if R > é , the returned line fp is

e Either an approximate closest line
e QOris d-close to the closest line £*

This helps us further restrict our search to
almost parallel lines to ¢,



Net Module

* |ntuition: sampling points from each
line finely enough to get a set of points
P, and building an ANN (P, €) should
suffice to find the approximate closest
line.



Net Module

* |ntuition: sampling points from each
line finely enough to get a set of points
P, and building an ANN (P, €) should
suffice to find the approximate closest
line.

Lemma:

* Let x be the separation parameter:
distance between two adjacent
samples on a line

* Then

— Either the returned line £, is an
approximate closest line

— Or dist(q,i’p) < x/e
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Parallel Module - Intuition

* Alllinesin L are parallel

* Data structure: 2]
— Project all lines onto any hyper-plane
g which is perpendicular to all the °
lines to get point set P
— Build ANN data structure ANN (P, €) leo--{- f q
* Query algorithm: ®p
— Project the query on g to get g’ 3
— Find the approximate closest point to
q,i.e.,p =ANNp(q") e

— Return the correspondingline top



Parallel Module

All lines in L are §-close to a base line £,

Project the lines onto a hyper-plane g which is
perpendicular to ¥,

Query is close enough to g
Use the same data structure and query algorith

e

by




Parallel Module

* Alllinesin L are 6-close to a base line £},

* Project the lines onto a hyper-plane g which is st
perpendicular to ¥,

* Query is close enough to g

Jo--!.0 1
: ®
* Use the same data structure and query algorlthm\L | 5
—~®
A D £ ®
Lemma: if dist(q, g) < ?6 ,then b
. Either the returned line £,, is an approximate closest T
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Parallel Module

* Alllinesin L are 6-close to a base line £},

* Project the lines onto a hyper-plane g which is e
perpendicular to ¥,

* Query is close enough to g

i
* Use the same data structure and query algorithm\L

~e P
. . De Cb
Lemma: if dist(q, g) < e then
. Either the returned line £,, is an approximate closest T
ine

 Or dist(q,fp) <D

Thus, for a set of almost parallel lines, we can use a set
of parallel modules to cover a bounded region.




General Case
* Input lines can have any configuration
* Divergent Case
* Input lines are O (€)-far from each other

* Almost Parallel Case
* Input lines are all O (e)-close to each other

ALGORITHMS
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Outline of the Algorithms

* Input: asetof nlines S

* Randomly choose a subset of n/2 lines T
* Solve the problem over T to get a line £,
* For logn iterations

— Use £, to find a much closer line £,," | improvement
— Update £, with £}, step
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Outline of the Algorithms

* Input: asetof nlines S

* Randomly choose a subset of n/2 lines T
* Solve the problem over T to get a line £,
* For logn iterations

— Use £, to find a much closer line £,," | improvement
— Update £, with £}, step

Let £1, ..., €10g n b€ the logn closest lines to q in the set S

With high probability at least one of {f4, ..., 1ogn } are
sampled in T
— dist(q,{’p) < dist(q, Y1og n) (1+¢€)

— log n improvement steps suffices to find an approximate closest
line



Improvement Step

Given a line £, how to improveit, i.e., find a
closer line?



Improvement Step

Given a line £, how to improveit, i.e., find a
closer line?

* Data structure
* Query Processing Algorithm




General Case

* Search among all lines that are e-far from
current line using Divergent Case



General Case

* Search among all lines that are e-far from
current line using Divergent Case

* Search amongthe lines that are almost
parallel to line found in previous step using
Almost Parallel Case



Divergent Case

Assume any two lines are e-far; they diverge
quickly.
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Divergent Case

Assume any two lines are e-far; they diverge
quickly.

 Let ? be the currentline, and £* be the closest
line to g

* Letx =dist(q,?)
e dist(q,€*) <x

— All potential £* intersect B(q, x)

— Good news: we can build a net module inside
B(q, x) with separation parameter x€? to
improve over £

— Bad news: we don’t know this ball in advance



Divergent Case contd.

What we know:

o dist(£,¢") < 2x
* Let g’ be the projection of g on ¢
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Divergent Case contd.

What we know:

o dist(£,¥") < 2x
* Let g’ be the projection of g on ¢

— CP,_ p+ is not farther than E from q’

since they are e-far

' i
<2x

r

CP(t—e*) O
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Divergent Case contd.

What we know:
o dist(£,¥") < 2x
* Let g’ be the projection of g on ¢

— CP,_ p+ is not farther than E from q’
since they are e-far

— B(q',0 ()—:)) touches all such lines

- \
<2x 1

r

CP(t—e*) °®9 ¢
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Data Structure

Foreach ¥ € S
« Sort all lines £ according to their distance from £
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Data Structure

Foreach ¥ € S
« Sort all lines £ according to their distance from £

* Foralll <i<n,letS; be the it" closest lines

0

/ CP(E—L1) CP(t—02) CP(t—¢3)
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Data Structure

Foreach? € S
« Sort all lines £ according to their distance from £
* Foralll <i<n,letS; be the it" closest lines

— Sort all lines in S; such as ¢’ according to the
position of CPy_,p,

/ CP({—¢1) CP({—£2) CP(£—03)
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Data Structure

Foreach? € S
« Sort all lines £ according to their distance from £
* Foralll <i<n,letS; be the it" closest lines

— Sort all lines in S; such as ¢’ according to the
position of CPy_,p,

— For each interval of lines A in sorted S;

/ CP(E—L1) CP(¢—¢2)



Data Structure

Foreach? € S
« Sort all lines £ according to their distance from £
* Foralll <i<n,letS; be the it" closest lines

— Sort all lines in S; such as ¢’ according to the
position of CPy_,p,

— For each interval of lines A in sorted S;

* Find smallest ball B4 (04, 1a) With its
center on £ which intersects all lines in A

>(ry < 0(9)
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Data Structure

Foreach? € S
« Sort all lines £ according to their distance from £
* Foralll <i<n,letS; be the it" closest lines

— Sort all lines in S; such as ¢’ according to the
position of CPy_,p,

— For each interval of lines A in sorted S;

* Find smallest ball B4 (04, 1a) With its
center on £ which intersects all lines in A

>(ry < 0(9)
e Construct a net module inside of the ball
of B(0,4, 14/€?) with separation r,e3
(#samples = O(n 14/(€%14€3)) = 0(n/€>))

4

B(OA IA /€2‘ )
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Data Structure

Foreach? € S
« Sort all lines £ according to their distance from £
* Foralll <i<n,letS; be the it" closest lines

— Sort all lines in S; such as ¢’ according to the
position of CPy_,p,

— For each interval of lines A in sorted S;

* Find smallest ball B4 (04, 1a) With its
center on £ which intersects all lines in A

>(rs < 0())
e Construct a net module inside of the ball
of B(0,4, 14/€?) with separation r,e3
(#samples = O(n 14/(€%14€3)) = 0(n/€e>))
e Construct an unbounded module outside

of By (OA,;—ZTA)

==
L

RERRRRRRRRRRRRRRRRRRRRARRRE
Unbounded Module

o

N\
Net Module \\

79




Query Processing Algorithm

Given query point q




Query Processing Algorithm

Given query point q
— Projectqonftogetq’
— Use binary search to find the set A of all lines

£’ that are within distance 2x of £, and that
CP,_ . is within distance 2x/e of q'




Query Processing Algorithm

Given query point q
— Projectqonftogetq’
— Use binary search to find the set A of all lines

£’ that are within distance 2x of £, and that
CP,_ . is within distance 2x/e of q'




Query Processing Algorithm

Given query point q
— Projectqonftogetq’
— Use binary search to find the set A of all lines

£’ that are within distance 2x of £, and that
CP,_ . is within distance 2x/e of q'

— Let B4(0y4,74) be the corresponding ball




Query Processing Algorithm

Given query point q
— Projectqonftogetq’
— Use binary search to find the set A of all lines

£’ that are within distance 2x of £, and that )
CP,_ . is within distance 2x/e of q'

— Let B4(0y4,74) be the corresponding ball

— Ifx € By(0,, Z_—‘g) use net module:

* Find approximate closest line -> done!

e Orfinda line with distance at most
r.€2 < xe (ry < x/€) ->weimproved

Net Module



Query Processing Algorithm

Given query point q

Project g on £ to get q’

Use binary search to find the set A of all lines
£’ that are within distance 2x of £, and that
CP,_ . is within distance 2x/e of q'

Let B,(04,74) be the corresponding ball
If x € By(0y, Z_—‘g) use net module:

* Find approximate closest line -> done!
 Orfinda line with distance at most

r.€2 < xe (ry < x/€) ->weimproved
Otherwise use unbounded module to find the
approximate closest line -> done!

® O

Unbounded Module



Almost Parallel

All lines are 2e-close to each other.
For each line £ slab
* Partition the space into slabs using A

perpendicular hyperplanes to ¢ s.t. for
any pair of lines £, 4,

|
#

R
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Almost Parallel

All lines are 2e-close to each other.
For each line £

* Partition the space into slabs using
perpendicular hyperplanes to ¢ s.t. for
any pair of lines £, 4,

— In each slab the relative order of
disty () (£, £1)and disty e o) (£, €2) on
the hyper-plane remains the same as we
move o on ¥ in the slab

There is a unique ordering of the lines

—_—

—

—

R
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Almost Parallel

All lines are 2e-close to each other.
For each line £

* Partition the space into slabs using
perpendicular hyperplanes to ¢ s.t. for o
any pair of lines £, 4,

—_—

— In each slab the relative order of

disty o) (£, £1)and distyp o) (£, €2) on | TT——0 0 e ——

the hyper-plane remains the same as we P
move o on £ in the slab

R

L
®

There is a unique ordering of the lines .

— distyp o) (£1,%2) on the hyper-plane is
monotone

The minimum ball intersecting any prefix of
lines have its center on the boundary of slab
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Almost Parallel

All lines are 2e-close to each other.
For each line £

* Partition the space into slabs using
perpendicular hyperplanes to ¢ s.t. for o
any pair of lines £, 4,

—_—

— In each slab the relative order of

disty o) (£, £1)and distyp o) (£, €2) on | TT——0 0 e ——

the hyper-plane remains the same as we P
move o on £ in the slab

R

?
[ ]

There is a unique ordering of the lines .

— distyp o) (£1,%2) on the hyper-plane is
monotone

The minimum ball intersecting any prefix of
lines have its center on the boundary of slab.

« 0(n?) slabs suffices

90




Data Structure in Each Slab

* Foreachi, letB(o,7) be the smallest ball
touchingthe closest it" liness.t. 0 € £. We
know o would be on the boundary of slab.
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Data Structure in Each Slab

* Foreachi, letB(o,7) be the smallest ball

touchingthe closest it" liness.t. 0 € £. We

know o would be on the boundary of slab.
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Data Structure in Each Slab

* Foreachi, letB(o,7) be the smallest ball

touchingthe closest it" liness.t. 0 € £. We

know o would be on the boundary of slab.

.....
......
.............
..
-------

L

°1 Q\X
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Data Structure in Each Slab

Foreach i, let B(o,7) be the smallest ball
touchingthe closest it" liness.t. 0 € £. We
know o would be on the boundary of slab.

Let 8, > -+ > &; be all pairwise angles y
let Rg = —, ..., Ry = —

650, . €6t

Considerthe balls B(o, Ry), ..., B(0, R;) ?\

(0.1)
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Data Structure in Each Slab

Foreach i, let B(o,7) be the smallest ball
touchingthe closest it" liness.t. 0 € £. We
know o would be on the boundary of slab.
Let 69 > -+, > be all pairwise angles

r r
— e, Ry = —
€S, "t T €6,

Consider the balls B(o, Ry), ..., B(0, R;)
Build net moduleinside B(o, Ry)

Let RO ==

.o
......
.............
.-
PR
..
.....

l\\.:
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Data Structure in Each Slab

Foreach i, let B(o,7) be the smallest ball
touchingthe closest it" liness.t. 0 € £. We
know o would be on the boundary of slab.

Let §y > --- > &; be all pairwise angles

r r B O L L
LEtRO :E_SO,...,Rt :E_(St

Consider the balls B(o, Ry), ..., B(0, R;)
Build net moduleinside B(o, Ry)

B(o,R0)

l\\.:

Net Module
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Data Structure in Each Slab

Foreach i, let B(o,7) be the smallest ball
touchingthe closest it" liness.t. 0 € £. We

know o would be on the boundary of slab.
Let §y > --- > &; be all pairwise angles

.o
......
.....
.....

Unbounded Module

T r
LetRO :E—SO,...,Rt :E_(gt

Consider the balls B(o, Ry), ..., B(0, R;)
Build net moduleinside B(o, Ry)
For each ball B(o, R;)

— Build unbounded module on it

l\\.:
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Data Structure in Each Slab

Foreach i, let B(o,7) be the smallest ball
touchingthe closest it" liness.t. 0 € £. We
know o would be on the boundary of slab.
Let §y > --- > &; be all pairwise angles

r r
Let RO = FSO’ ...,Rt = E_(?t
Consider the balls B(o, Ry), ..., B(0, R;)
Build net moduleinside B(o, Ry)

For each ball B(o, R;)
— Build unbounded module on it
— Foreachline

* Build a set of parallel modules with £},
as their base line for all the lines that
are 0;-close to £}, , so that they cover
the space between B(o, R;) and
B(o, R;;1) with separation R;, 1€

B(o,R1)_—

| ]

ﬂm)

Parallel Modules

l\\.:

.

98




Query Processing Algorithm

* Given g, find the right slab, and

retrieve all candidate lines

e Using binary search find r



Query Processing Algorithm

Given g, find the right slab, and
retrieve all candidate lines

Using binary search find r

B(o,R(1+1))

Find largest i such that g € B(o, R;)

.....
........
.....

Unbounded Module

L
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Query Processing Algorithm

Given g, find the right slab, and
retrieve all candidate lines

Using binary search find r

B(o,R(1+1))

Find largest i such that g € B(o, R;)

Use the unbounded module of
B(o, R;) to find aline £’, we know

— Either ¢’ is an approximate
closestline -> done

.o
...........
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Nearest Line Search Problem
Modules: unbounded, net, parallel
Use of random sampling

How to improve given a line

Bounds of our algorithm

— Polynomial Space:

an\ 0@ N\ (D) B oL
(&) xs ((;) ,e) - o +)°@
— Poly-logarithmic query time :
N 0(1) 1 0(1)
tog o ()" )= (d+10gn+2)
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Future Work

 The current result is not good in practice
— Large exponents
— Algorithm is complicated
Can we get a simpler algorithms?

* Generalization to higher dimensional flats
* Generalization to other objects, e.g. balls



THANK YOU!



