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The NLS Problem 

• Given: a set of 𝑁 lines 𝐿 in ℝ𝑑 

• Goal: build a data structure s.t. 
– given a query 𝑞, find the closest line 

ℓ∗ to 𝑞 

– polynomial space 

–  sub-linear query time 

Approximation 

• Finds an approximate closest line ℓ 
𝑑𝑖𝑠𝑡 𝑞, ℓ ≤ 𝑑𝑖𝑠𝑡(𝑞, ℓ∗)(1 + 𝜖) 
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Nearest Neighbor Problem 

NN: Given a set of 𝑁 points 𝑃, build a data structure 
s.t. given a query point 𝑞, finds the closest point 𝑝∗ 
to 𝑞. 
 
• Applications: database, information retrieval, 

pattern recognition, computer vision 
– Features: dimensions 
– Objects: points 
– Similarity: distance between points 

• Current solutions suffer from “curse of 
dimensionality”:  
– Either space or query time is exponential in 𝑑 
– Little improvement over linear search 
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Approximate Nearest Neighbor(ANN) 

• ANN: Given a set of 𝑁 points 𝑃, build a data 
structure s.t. given a query point 𝑞, finds an 
approximate closest point 𝑝 to 𝑞, i.e.,  

𝑑𝑖𝑠𝑡 𝑞, 𝑝 ≤ 𝑑𝑖𝑠𝑡 𝑞, 𝑝∗ 1 + 𝜖  
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Approximate Nearest Neighbor(ANN) 

• ANN: Given a set of 𝑁 points 𝑃, build a data 
structure s.t. given a query point 𝑞, finds an 
approximate closest point 𝑝 to 𝑞, i.e.,  

𝑑𝑖𝑠𝑡 𝑞, 𝑝 ≤ 𝑑𝑖𝑠𝑡 𝑞, 𝑝∗ 1 + 𝜖  
 
• There exist data structures with different 

tradeoffs.  Example: 

– Space: 𝑑𝑁
𝑂

1

𝜖2  

– Query time: 
𝑑 log 𝑁

𝜖

𝑂 1
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Motivation for NLS 

One of the simplest generalizations of 
ANN: data items are represented by 𝑘-
flats (affine subspace) instead of points 

• Model data under linear variations 

• Unknown or unimportant parameters in 
database  

• Example: 
– Varying light gain parameter of images 

– Each image/point becomes a line 

– Search for the closest line to the query image 
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1
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– Query time is fast : 𝑑 + log 𝑁 +
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𝜖
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– Space is super-polynomial : 2 log 𝑁 𝑂 1
 

 

Dual Problem: Database is a set of points, query is a 𝑘-flat 
• [AIKN] for 1-flat: for any 𝑡 > 0 

– Query time: 𝑂 𝑑3𝑁0.5+𝑡  

– Space: 𝑑2𝑁
𝑂

1

𝜖2+
1

𝑡2   

• Very recently [MNSS] extended it for 𝑘-flats 

– Query time 𝑂 𝑛
𝑘

𝑘+1−𝜌
+𝑡

 

– Space: 𝑂(𝑛
1+

𝜎𝑘

𝑘+1−𝜌 + 𝑛 log
𝑂

1

𝑡 𝑛) 
 



Our Result 

We give a randomized algorithm that for any sufficiently 
small 𝜖 reports a 1 + 𝜖 -approximate solution with high 
probability 

• Space: 𝑁 + 𝑑
𝑂

1

𝜖2  

• Time : 𝑑 + log 𝑁 +
1

𝜖

𝑂 1
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Our Result 

We give a randomized algorithm that for any sufficiently 
small 𝜖 reports a 1 + 𝜖 -approximate solution with high 
probability 

• Space: 𝑁 + 𝑑
𝑂

1

𝜖2  

• Time : 𝑑 + log 𝑁 +
1

𝜖

𝑂 1
 

• Matches up to polynomials, the performance of best 
algorithm for ANN. No exponential dependence on 𝑑 

• The first algorithm with poly log query time and 
polynomial space for objects other than points 

• Only uses reductions to ANN 
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Notation 

• 𝐿 : the set of lines with size 𝑁 
• q : the query point 
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐 
• 𝑑𝑖𝑠𝑡: the Euclidean distance 

between objects 
• 𝑎𝑛𝑔𝑙𝑒: defined between lines 
• 𝛿-close: two lines ℓ , ℓ′ are 𝛿-close 

if sin(𝑎𝑛𝑔𝑙𝑒 ℓ, ℓ′ ) ≤ 𝛿. Similarly 
we define 𝛿-far/ strictly 𝛿-close/ 
strictly 𝛿-far 

• 𝐶𝑃ℓ1→ℓ2
: closest point on ℓ1 to ℓ2 

 

27 



MODULES 

Unbounded Module 

Net Module 

Parallel Module 
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Unbounded Module - Intuition 

• All lines in 𝐿 pass through the origin 
𝑜 
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Unbounded Module - Intuition 

• All lines in 𝐿 pass through the origin 
𝑜 

• Data structure:  
– Project all lines onto any sphere 

𝑆 𝑜, 𝑟  to get point set 𝑃 

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖) 
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Unbounded Module - Intuition 

• All lines in 𝐿 pass through the origin 
𝑜 

• Data structure:  
– Project all lines onto any sphere 

𝑆 𝑜, 𝑟  to get point set 𝑃 

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖) 

• Query Algorithm: 
– Project the query on 𝑆(𝑜, 𝑟) to get 𝑞′ 

– Find the approximate closest point to 
𝑞′, i.e., 𝑝 = 𝐴𝑁𝑁𝑃 𝑞′  

– Return the corresponding line of 𝑝 

  

 
31 



Unbounded Module 

• All lines in 𝐿 pass through a small ball 
𝐵 𝑜, 𝑟  

• Query is far enough, outside of 𝐵(𝑜, 𝑅) 
• Use the same data structure and 
     query algorithm 
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Lemma: if 𝑅 ≥
𝑟

𝜖𝛿
 , the returned line ℓ𝑝 is 

• Either an approximate closest line 
• Or is 𝛿-close to the closest line ℓ∗ 
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Unbounded Module 

• All lines in 𝐿 pass through a small ball 
𝐵 𝑜, 𝑟  

• Query is far enough, outside of 𝐵(𝑜, 𝑅) 
• Use the same data structure and 
     query algorithm 
 

Lemma: if 𝑅 ≥
𝑟

𝜖𝛿
 , the returned line ℓ𝑝 is 

• Either an approximate closest line 
• Or is 𝛿-close to the closest line ℓ∗ 

 
This helps us further restrict our search to 
almost parallel lines to ℓ𝑝 
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Net Module 

• Intuition: sampling points from each 
line finely enough to get a set of points 
𝑃, and building an 𝐴𝑁𝑁(𝑃, 𝜖) should 
suffice to find the approximate closest 
line. 
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Net Module 

• Intuition: sampling points from each 
line finely enough to get a set of points 
𝑃, and building an 𝐴𝑁𝑁(𝑃, 𝜖) should 
suffice to find the approximate closest 
line. 
 

Lemma:  
• Let 𝑥 be the separation parameter: 

distance between two adjacent 
samples on a line 

• Then 
– Either the returned line ℓ𝑝 is an 

approximate closest line 

– Or 𝑑𝑖𝑠𝑡 𝑞, ℓ𝑝 ≤ 𝑥/𝜖 
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Parallel Module - Intuition 

• All lines in 𝐿 are parallel 
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𝑔 which is perpendicular to all the 
lines to get point set 𝑃 

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖) 

• Query algorithm: 
– Project the query on 𝑔 to get 𝑞′ 

– Find the approximate closest point to 
𝑞′, i.e., 𝑝 = 𝐴𝑁𝑁𝑃 𝑞′  

– Return the corresponding line to 𝑝 
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Parallel Module 

• All lines in 𝐿 are 𝛿-close to a base line ℓ𝑏  
• Project the lines onto a hyper-plane 𝑔 which is 

perpendicular to ℓ𝑏  
• Query is close enough to 𝑔 
• Use the same data structure and query algorithm 
 

Lemma: if 𝑑𝑖𝑠𝑡 𝑞, 𝑔 ≤
𝐷𝜖

𝛿
 , then 

• Either the returned line ℓ𝑝 is an approximate closest 
line 

• Or 𝑑𝑖𝑠𝑡 𝑞, ℓ𝑝 ≤ 𝐷 
 
Thus, for a set of almost parallel lines, we can use a set 
of parallel modules to cover a bounded region. 
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ALGORITHMS 

General Case 

• Input lines can have any configuration 

• Divergent Case 

• Input lines are 𝑂(𝜖)-far from each other 

• Almost Parallel Case 

• Input lines are all 𝑂(𝜖)-close to each other 
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Outline of the Algorithms 

• Input: a set of 𝑛 lines 𝑆 
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Outline of the Algorithms 

• Input: a set of 𝑛 lines 𝑆 
• Randomly choose a subset of 𝑛/2 lines 𝑇 

• Solve the problem over 𝑇 to get a line ℓ𝑝 
• For log 𝑛 iterations 

– Use ℓ𝑝 to find a much closer line ℓ𝑝′ 

– Update ℓ𝑝 with ℓ𝑝
′  
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Outline of the Algorithms 

• Input: a set of 𝑛 lines 𝑆 
• Randomly choose a subset of 𝑛/2 lines 𝑇 

• Solve the problem over 𝑇 to get a line ℓ𝑝 
• For log 𝑛 iterations 

– Use ℓ𝑝 to find a much closer line ℓ𝑝′ 

– Update ℓ𝑝 with ℓ𝑝
′  

 

Why? 
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Outline of the Algorithms 

• Input: a set of 𝑛 lines 𝑆 
• Randomly choose a subset of 𝑛/2 lines 𝑇 

• Solve the problem over 𝑇 to get a line ℓ𝑝 
• For log 𝑛 iterations 

– Use ℓ𝑝 to find a much closer line ℓ𝑝′ 

– Update ℓ𝑝 with ℓ𝑝
′  

 

Let ℓ1 , … , ℓlog 𝑛  be the log 𝑛 closest lines to 𝑞 in the set 𝑆 
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Outline of the Algorithms 

• Input: a set of 𝑛 lines 𝑆 
• Randomly choose a subset of 𝑛/2 lines 𝑇 

• Solve the problem over 𝑇 to get a line ℓ𝑝 
• For log 𝑛 iterations 

– Use ℓ𝑝 to find a much closer line ℓ𝑝′ 

– Update ℓ𝑝 with ℓ𝑝
′  

 

Let ℓ1 , … , ℓlog 𝑛  be the log 𝑛 closest lines to 𝑞 in the set 𝑆 

With high probability at least one of {ℓ1, … , ℓlog 𝑛} are 
sampled in 𝑇 

– 𝑑𝑖𝑠𝑡 𝑞, ℓ𝑝 ≤ 𝑑𝑖𝑠𝑡 𝑞, ℓlog 𝑛 (1 + 𝜖) 

– log 𝑛 improvement steps suffices to find an approximate closest 
line 
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Improvement Step 

Given a line ℓ, how to improve it, i.e., find a 
closer line? 
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Improvement Step 

Given a line ℓ, how to improve it, i.e., find a 
closer line? 

• Data structure 

• Query Processing Algorithm 
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General Case 

• Search among all lines that are 𝜖-far from 
current line using Divergent Case 
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General Case 

• Search among all lines that are 𝜖-far from 
current line using Divergent Case 
 

• Search among the lines that are almost 
parallel to line found in previous step using 
Almost Parallel Case 
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Divergent Case 

Assume any two lines are 𝜖-far; they diverge 
quickly. 
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Divergent Case 

Assume any two lines are 𝜖-far; they diverge 
quickly. 
 
• Let ℓ be the current line, and ℓ∗ be the closest 

line to 𝑞 
• Let 𝑥 = 𝑑𝑖𝑠𝑡(𝑞, ℓ) 
• 𝑑𝑖𝑠𝑡 𝑞, ℓ∗ ≤ 𝑥  
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66 



Divergent Case 

Assume any two lines are 𝜖-far; they diverge 
quickly. 
 
• Let ℓ be the current line, and ℓ∗ be the closest 

line to 𝑞 
• Let 𝑥 = 𝑑𝑖𝑠𝑡(𝑞, ℓ) 
• 𝑑𝑖𝑠𝑡 𝑞, ℓ∗ ≤ 𝑥  

– All potential ℓ∗ intersect 𝐵(𝑞, 𝑥) 
– Good news: we can build a net module inside 

𝐵 𝑞, 𝑥  with separation parameter 𝑥ϵ2 to 
improve over ℓ 
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Divergent Case 

Assume any two lines are 𝜖-far; they diverge 
quickly. 
 
• Let ℓ be the current line, and ℓ∗ be the closest 

line to 𝑞 
• Let 𝑥 = 𝑑𝑖𝑠𝑡(𝑞, ℓ) 
• 𝑑𝑖𝑠𝑡 𝑞, ℓ∗ ≤ 𝑥  

– All potential ℓ∗ intersect 𝐵(𝑞, 𝑥) 
– Good news: we can build a net module inside 

𝐵 𝑞, 𝑥  with separation parameter 𝑥ϵ2 to 
improve over ℓ 

– Bad news: we don’t know this ball in advance 
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Divergent Case contd. 

What we know: 

• 𝑑𝑖𝑠𝑡 ℓ, ℓ∗ ≤ 2𝑥 
• Let 𝑞′ be the projection of 𝑞 on ℓ 
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Divergent Case contd. 

What we know: 

• 𝑑𝑖𝑠𝑡 ℓ, ℓ∗ ≤ 2𝑥 
• Let 𝑞′ be the projection of 𝑞 on ℓ 

– 𝐶𝑃ℓ→ℓ∗ is not farther than 
𝑥

𝜖
 from 𝑞′ 

since they are 𝜖-far  
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Divergent Case contd. 

What we know: 

• 𝑑𝑖𝑠𝑡 ℓ, ℓ∗ ≤ 2𝑥 
• Let 𝑞′ be the projection of 𝑞 on ℓ 

– 𝐶𝑃ℓ→ℓ∗ is not farther than 
𝑥

𝜖
 from 𝑞′ 

since they are 𝜖-far  

– 𝑩(𝒒′, 𝑶
𝒙

𝝐
) touches all such lines 
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Data Structure 

For each ℓ ∈ 𝑆 

• Sort all lines ℓ′ according to their distance from ℓ 
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Data Structure 

For each ℓ ∈ 𝑆 

• Sort all lines ℓ′ according to their distance from ℓ 

• For all 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖  be the 𝑖𝑡ℎ  closest lines 
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Data Structure 

For each ℓ ∈ 𝑆 

• Sort all lines ℓ′ according to their distance from ℓ 
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𝑥

𝜖
)) 

 

77 



Data Structure 

For each ℓ ∈ 𝑆 

• Sort all lines ℓ′ according to their distance from ℓ 

• For all 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖  be the 𝑖𝑡ℎ  closest lines 

– Sort all lines  in 𝑆𝑖  such as ℓ′ according to the 
position of 𝐶𝑃ℓ→ℓ′ 

– For each interval of lines 𝐴 in sorted 𝑆𝑖 

• Find smallest ball 𝐵𝐴(oA , rA ) with its 
center on ℓ which intersects all lines in 𝐴  

-> (𝑟𝐴 ≤ 𝑂(
𝑥

𝜖
)) 

• Construct a net module inside of the ball 
of 𝐵(𝑜𝐴, 𝑟𝐴/𝜖2) with separation 𝑟𝐴𝜖3 

(#samples = O(𝑛 𝑟𝐴/(𝜖2𝑟𝐴𝜖 3)) = 𝑂(𝑛/𝜖 5)) 
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𝜖
)) 

• Construct a net module inside of the ball 
of 𝐵(𝑜𝐴, 𝑟𝐴/𝜖2) with separation 𝑟𝐴𝜖3 

(#samples = O(𝑛 𝑟𝐴/(𝜖2𝑟𝐴𝜖 3)) = 𝑂(𝑛/𝜖 5)) 

• Construct an unbounded module outside 

of  𝐵𝐴 𝑜𝐴 ,
1

𝜖2
𝑟𝐴  
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Query Processing Algorithm 

Given query point 𝑞 

– Project 𝑞 on ℓ to get 𝑞′ 

– Use binary search to find the set 𝐴 of all lines 
ℓ′ that are within distance 2𝑥 of ℓ, and that 
𝐶𝑃ℓ→ℓ′  is within distance 2𝑥/𝜖 of 𝑞′ 
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𝑟𝐴

𝜖2) use net module: 

• Find approximate closest line -> done! 

• Or find a line with distance at most 
𝑟𝐴𝜖2 ≤ 𝑥𝜖    (𝑟𝐴 ≤ 𝑥/𝜖)  -> we improved 
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– Let 𝐵𝐴(𝑜𝐴, 𝑟𝐴) be the corresponding ball 

– If 𝑥 ∈ 𝐵𝐴(𝑜𝐴,
𝑟𝐴

𝜖2) use net module: 

• Find approximate closest line -> done! 

• Or find a line with distance at most 
𝑟𝐴𝜖2 ≤ 𝑥𝜖    (𝑟𝐴 ≤ 𝑥/𝜖)  -> we improved 

– Otherwise use unbounded module to find the 
approximate closest line -> done! 
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Almost Parallel 

All lines are 2𝜖-close to each other. 
For each line ℓ 
• Partition the space into slabs using 

perpendicular hyperplanes to ℓ s.t. for 
any pair of lines ℓ1 , ℓ2: 

86 

slab 



Almost Parallel 

All lines are 2𝜖-close to each other. 
For each line ℓ 
• Partition the space into slabs using 

perpendicular hyperplanes to ℓ s.t. for 
any pair of lines ℓ1 , ℓ2: 
– In each slab the relative order of 
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the hyper-plane remains the same as we 
move 𝑜 on ℓ in the slab 
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– 𝑑𝑖𝑠𝑡𝐻 ℓ,𝑜 ℓ1 , ℓ2  on the hyper-plane is 
monotone 

The minimum ball intersecting any prefix of 
lines have its center on the boundary of slab. 

• 𝑂 𝑛2  slabs suffices 
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Data Structure in Each Slab  

• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball 
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ.  We 
know 𝑜 would be on the boundary of slab. 
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• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball 
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ.  We 
know 𝑜 would be on the boundary of slab. 

• Let 𝛿0 > ⋯ > 𝛿𝑡  be all pairwise angles 

• Let 𝑅0 =
𝑟

𝜖𝛿0
, … , 𝑅𝑡 =

𝑟

𝜖𝛿𝑡
 

• Consider the balls 𝐵 𝑜, 𝑅0 , … , 𝐵 𝑜, 𝑅𝑡  
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Data Structure in Each Slab  

• For each 𝑖, let 𝐵(𝑜, 𝑟) be the smallest ball 
touching the closest 𝑖𝑡ℎ lines s.t. 𝑜 ∈ ℓ.  We 
know 𝑜 would be on the boundary of slab. 

• Let 𝛿0 > ⋯ > 𝛿𝑡  be all pairwise angles 

• Let 𝑅0 =
𝑟

𝜖𝛿0
, … , 𝑅𝑡 =

𝑟

𝜖𝛿𝑡
 

• Consider the balls 𝐵 𝑜, 𝑅0 , … , 𝐵 𝑜, 𝑅𝑡  

• Build net module inside 𝐵 𝑜, 𝑅0  

• For each ball 𝐵(𝑜, 𝑅𝑖)  

– Build unbounded module on it 

– For each line ℓ𝑏 

• Build a set of parallel modules with ℓ𝑏 
as their base line for all the lines that 
are 𝛿𝑖-close to ℓ𝑏 , so that they cover 
the space between 𝐵(𝑜, 𝑅𝑖) and 
𝐵(𝑜, 𝑅𝑖+1) with separation 𝑅𝑖+1𝜖 
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Query Processing Algorithm  

• Given 𝑞, find the right slab, and 
retrieve all candidate lines 

• Using binary search find 𝑟 

 

99 



Query Processing Algorithm  

• Given 𝑞, find the right slab, and 
retrieve all candidate lines 

• Using binary search find 𝑟 

• Find largest 𝑖 such that  𝑞 ∉ 𝐵(𝑜, 𝑅𝑖) 

 

100 



Query Processing Algorithm  

• Given 𝑞, find the right slab, and 
retrieve all candidate lines 

• Using binary search find 𝑟 

• Find largest 𝑖 such that  𝑞 ∉ 𝐵(𝑜, 𝑅𝑖) 

• Use the unbounded module of 
𝐵(𝑜, 𝑅𝑖) to find a line ℓ′, we know 

– Either ℓ′ is an approximate 
closest line -> done 

– It is 𝛿𝑖+1-close to ℓ∗ 
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Summary 

• Nearest Line Search Problem 

• Modules: unbounded, net, parallel 

• Use of random sampling 

• How to improve given a line 

• Bounds of our algorithm 

– Polynomial Space:  

𝑑𝑁

𝜖

𝑂 1
× 𝒮

𝑁

𝜖

𝑂 1
, 𝜖 = 𝑂 𝑁 + 𝑑

𝑂
1

𝜖2  

– Poly-logarithmic query time : 

𝑑 log 𝑁 𝑂 1 × 𝒯(
𝑁

𝜖

𝑂 1
, 𝜖) =  𝑑 + log 𝑁 +

1

𝜖

𝑂 1
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Future Work 

• The current result is not good in practice 

– Large exponents 

– Algorithm is complicated 

Can we get a simpler algorithms? 
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Future Work 

• The current result is not good in practice 

– Large exponents 

– Algorithm is complicated 

Can we get a simpler algorithms? 

• Generalization to higher dimensional flats 

• Generalization to other objects, e.g. balls 
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